977 resultados para unknown input functional observers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents necessary and sufficient conditions for the existence and design of an unknown input Functional observer. The existence of the observer can be verified by computing a nullspace of a known matrix and testing some matrix rank conditions. The existence of the observer does not require the satisfaction of the observer matching condition (i.e. Equation (16) in Hou and Muller 1992, ‘Design of Observers for Linear Systems with Unknown Inputs’, IEEE Transactions on Automatic Control, 37, 871–875), is not limited to estimating scalar functionals and allows for arbitrary pole placement. The proposed observer always exists when a state observer exists for the unknown input system, and furthermore, the proposed observer can exist even in some instances when an unknown input state observer does not exist.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Designing minimum possible order (minimal) disturbance-decoupled proper functional observers for multi-input multi-output (MIMO) linear time-invariant (LTI) systems is studied. It is not necessary that a minimum-order unknown-input functional observer (UIFO) exists in our proposed design procedure. If the minimum-order observer cannot be attained, the observer's order is increased sequentially through a recursive algorithm, so that the minimal order UIFO can be obtained. To the best of our knowledge, this is the first time that this specific problem is addressed. It is assumed that the system is unknown-input functional detectable, which is the least requirement for the existence of a stable UIFO. This condition also is a certificate for the convergence of our observer's order-increase algorithm. Two methodologies are demonstrated to solve the observer design equations. The second presented scheme, is a new design method that based on our observations has a better numerical performance than the first conventional one. Numerical examples and simulation results in the MATLAB/Simulink environment describe the overall observer design procedure, and highlight the efficacy of our new methodology to solve the observer equations in comparison to the conventional one.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reduced order multi-functional observer design for multi-input multi-utput (MIMO) linear time-invariant (LTI) systems with constant delayed inputs is studied. This research is useful in the input estimation of LTI systems with actuator delay, as well as system monitoring and fault detection of these systems. Two approaches for designing an asymptotically stable functional observer for the system are proposed: delay-dependent and delay-free. The delay-dependent observer is infinite-dimensional, while the delay-free structure is finite-dimensional. Moreover, since the delay-free observer does not require any information on the time delay, it is more practical in real applications. However, the delay-dependent observer contains less restrictive assumptions and covers more variety of systems. The proposed observer design schemes are novel, simple to implement, and have improved numerical features compared to some of the other available approaches to design (unknown-input) functional observers. In addition, the proposed observers usually possess lower order than ordinary Luenberger observers, and the design schemes do not need the observability or detectability requirements of the system. The necessary and sufficient conditions of the existence of an asymptoticobserver in each scenario are explored. The extensions of the proposed observers to systems with multiple delayed-inputs are also discussed. Several numerical examples and simulation results are employed to support our theories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finding the least possible order of a stable Unknown-Input Functional Observer (UIFO) has always been a challenge in observer design theory. A practical recursive algorithm is proposed in this technical note to design a minimal multi-functional observer for multi-input multi-output (MIMO) linear time-invariant (LTI) systems with unknown-inputs. The concept of unknown-input functional observability is introduced,and it is used as a certificate of the convergence of our algorithm. The proposed procedure looks for a number of additional auxiliary functions to be augmented to the original functions desired for reconstruction. The resulting UIFO is proper, and minimal (of minimum possible order). Moreover, the algorithm does not need the system to be unknown-input observable. A numerical example shows the procedure as well as the effectiveness of the proposed algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Designing delay-dependent functional observers for LTI systems with multiple known time-varying state delays and unknown time-varying input delays is studied. The input delays are arbitrary, but the state delays should be upper-bounded. In addition, two scenarios of slow-varying and fast-varying state delays are investigated. The results of the paper can also be considered as one of the first contributions considering unknown-input functional observer design for linear systems with multiple time-varying state delays. Based on the Lyapunov Krasovskii approach, delay-dependent sufficient conditions of the exponential stability of the observer in each scenario are established in terms of linear matrix inequalities. Because of using effective techniques, such as the descriptor transformation and an advanced weighted integral inequality, the proposed stability criteria can result in larger stability regions compared with the other papers that study functional observers for time-varying delay systems. Furthermore, to help with the design procedure, a genetic algorithm-based scheme is proposed to adjust a weighting matrix in the established linear matrix inequalities. Two numerical examples illustrate the design procedure and demonstrate the efficacy of the proposed observer in each scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of designing linear functional observers for discrete time-delay systems with unknown-but-bounded disturbances in both the plant and the output is considered for the first time in this paper. A novel approach to design a minimum-order observer is proposed to guarantee that the observer error is ϵ-convergent, which means that the estimate converges robustly within an ϵ-bound of the true state. Conditions for the existence of this observer are first derived. Then, by utilising an extended Lyapunov-Krasovskii functional and the free-weighting matrix technique, a sufficient condition for ϵ-convergence of the observer error system is given. This condition is presented in terms of linear matrix inequalities with two parameters needed to be tuned, so that it can be efficiently solved by incorporating a two-dimensional search method into convex optimisation algorithms to obtain the smallest possible value for ϵ. Three numerical examples, including the well-known single-link flexible joint robotic system, are given to illustrate the feasibility and effectiveness of our results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This brief paper presents new conditions for the existence and design of reduced-order linear functional state observers for linear systems with unknown inputs. Systematic procedures for the synthesis of reduced-order functional observers are given. Numerical examples are given to illustrate the attractiveness and simplicity of the new design procedures.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the problem of estimating simultaneously a linear function of both the state and unknown input of linear system with unknown inputs. By adopting the descriptor system approach, the problem can be conveniently solved. Observers proposed in this paper are of low-order and do not include the derivatives of the outputs. New conditions for the existence of reduced-order observers are derived. A design procedure for the determination of the observer parameters can also be easily derived based on the derived existence conditions

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In control theory, a state observer is an auxiliary dynamical system that mirrors the behaviour of a physical system, and it is driven by input and output measurements of the physical system in order to provide an estimate of internal states of the physical system. The primary consideration in the design of an observer is that the estimate of the states should be close to the actual value of the system states. On the other hand, the functional observation problem centers on the construction of an auxiliary dynamical system, known as the functional observer or functional reconstructor, driven by the available system inputs and outputs in order to estimate a linear function or functions of the system states. Obviously, a functional observer is a general form of the state observer because when the linear functions are chosen as the individual states of the system then the problem of functional observation reduces to the problem of state observation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article considers the problem of estimating a partial set of the state vector and/or unknown input vector of linear systems driven by unknown inputs and time-varying delay in the state variables. Three types of reduced-order observers, namely, observers with delays, observers without internal delays and delay-free observers are proposed in this article. Existence conditions and design procedures are presented for the determination of parameters for each case of observers. Numerical examples are presented to illustrate the design procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers the design of reduced-order distributed functional observers for interconnected linear systems with the presence of time delays in the interconnections. Unlike observers which consider only the ideal non-delayed output information transfer, the proposed observer is capable of dealing with delayed output information from geographically separated subsystems. It is shown that by accepting measurement data from other subsystems, the conditions under which an observer exists can be made less conservative. Existence conditions, systematic and a straightforward procedure for the synthesis of the observers are given along with numerical examples illustrating the effectiveness and simplicity of the design algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports a new result on the fault detection of dynamical systems by employing only first-order functional observers. Indeed, we show that fault detection can be achieved by utilizing first-order functional observers. The advantages for having such simple structured observers are obvious from the economical and practical points of view as significant cost saving can be achieved. We derive existence conditions and an algorithm for the generation of residual signals to detect faults using firstorder functional observers. Two numerical examples are given to illustrate the proposed fault detection scheme. In one of the examples, a two-area interconnected power system with reheat thermal turbines is considered where only a first-order functional observer is designed to detect faults in the power system.