942 resultados para uncertainty in demand
Resumo:
This paper presents a method for calculating the power flow in distribution networks considering uncertainties in the distribution system. Active and reactive power are used as uncertain variables and probabilistically modeled through probability distribution functions. Uncertainty about the connection of the users with the different feeders is also considered. A Monte Carlo simulation is used to generate the possible load scenarios of the users. The results of the power flow considering uncertainty are the mean values and standard deviations of the variables of interest (voltages in all nodes, active and reactive power flows, etc.), giving the user valuable information about how the network will behave under uncertainty rather than the traditional fixed values at one point in time. The method is tested using real data from a primary feeder system, and results are presented considering uncertainty in demand and also in the connection. To demonstrate the usefulness of the approach, the results are then used in a probabilistic risk analysis to identify potential problems of undervoltage in distribution systems. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents two mathematical models and one methodology to solve a transmission network expansion planning problem considering uncertainty in demand. The first model analyzed the uncertainty in the system as a whole; then, this model considers the uncertainty in the total demand of the power system. The second one analyzed the uncertainty in each load bus individually. The methodology used to solve the problem, finds the optimal transmission network expansion plan that allows the power system to operate adequately in an environment with uncertainty. The models presented are solved using a specialized genetic algorithm. The results obtained for several known systems from literature show that cheaper plans can be found satisfying the uncertainty in demand.
Resumo:
This paper presents a mathematical model and a methodology to solve a transmission network expansion planning problem considering uncertainty in demand and generation. The methodology used to solve the problem, finds the optimal transmission network expansion plan that allows the power system to operate adequately in an environment with uncertainty. The model presented results in an optimization problem that is solved using a specialized genetic algorithm. The results obtained for known systems from the literature show that cheaper plans can be found satisfying the uncertainty in demand and generation. ©2008 IEEE.
Resumo:
On a symmetric differentiated Stackelberg duopoly model in which there is asymmetric demand information owned by leading and follower firms, we show that the leading firm does not necessarily have advantage over the following one. The reason for this is that the second mover can adjust its output level after observing the realized demand, while the first mover chooses its output level only with the knowledge of demand distribution.
Resumo:
In this paper, we consider a mixed market with uncertain demand, involving one private firm and one public firm with quadratic costs. The model is a two-stage game in which players choose to make their output decisions either in stage 1 or stage 2. We assume that the demand is unknown until the end of the first stage. We compute the output levels at equilibrium in each possible role. We also determine ex-ante and ex-post firms’ payoff functions.
Resumo:
Dissertação de mestrado em Engenharia Industrial
Resumo:
tentially valuable innovations. In energy policy, much attention is given to analysing and incentivising customer demand, but new technologies also need new supply markets, to provide products and services to build, operate and maintain the innovative technology. This paper addresses the impact of supply constraints on the long-term viability of sustainability related innovations, using the case of energy from waste (EfW). Uncertainties in the pricing and availability of feedstock (i.e. waste) deter potential investors in EfW projects. We draw on prior supply management research to conceptualise the problem, and identify what steps might be taken to address it. Based on this analysis, we propose a research agenda aimed at purchasing and supply scholars and centred on the need to understand better how markets evolve and how stakeholders can (legitimately) influence the evolution of supply markets to support the adoption of sustainability related innovation. Within this broad case, specific themes are recommended for further investigation.
Resumo:
Inventory control in complex manufacturing environments encounters various sources of uncertainity and imprecision. This paper presents one fuzzy knowledge-based approach to solving the problem of order quantity determination, in the presence of uncertain demand, lead time and actual inventory level. Uncertain data are represented by fuzzy numbers, and vaguely defined relations between them are modeled by fuzzy if-then rules. The proposed representation and inference mechanism are verified using a large numbers of examples. The results of three representative cases are summarized. Finally a comparison between the developed fuzzy knowledge-based and traditional, probabilistic approaches is discussed.
Resumo:
This paper presents a personal view of the interaction between the analysis of choice under uncertainty and the analysis of production under uncertainty. Interest in the foundations of the theory of choice under uncertainty was stimulated by applications of expected utility theory such as the Sandmo model of production under uncertainty. This interest led to the development of generalized models including rank-dependent expected utility theory. In turn, the development of generalized expected utility models raised the question of whether such models could be used in the analysis of applied problems such as those involving production under uncertainty. Finally, the revival of the state-contingent approach led to the recognition of a fundamental duality between choice problems and production problems.
Resumo:
In future power systems, in the smart grid and microgrids operation paradigms, consumers can be seen as an energy resource with decentralized and autonomous decisions in the energy management. It is expected that each consumer will manage not only the loads, but also small generation units, heating systems, storage systems, and electric vehicles. Each consumer can participate in different demand response events promoted by system operators or aggregation entities. This paper proposes an innovative method to manage the appliances on a house during a demand response event. The main contribution of this work is to include time constraints in resources management, and the context evaluation in order to ensure the required comfort levels. The dynamic resources management methodology allows a better resources’ management in a demand response event, mainly the ones of long duration, by changing the priorities of loads during the event. A case study with two scenarios is presented considering a demand response with 30 min duration, and another with 240 min (4 h). In both simulations, the demand response event proposes the power consumption reduction during the event. A total of 18 loads are used, including real and virtual ones, controlled by the presented house management system.
Resumo:
Demand response has gain increasing importance in the context of competitive electricity markets environment. The use of demand resources is also advantageous in the context of smart grid operation. In addition to the need of new business models for integrating demand response, adequate methods are necessary for an accurate determination of the consumers’ performance evaluation after the participation in a demand response event. The present paper makes a comparison between some of the existing baseline methods related to the consumers’ performance evaluation, comparing the results obtained with these methods and also with a method proposed by the authors of the paper. A case study demonstrates the application of the referred methods to real consumption data belonging to a consumer connected to a distribution network.
Consumption Management of Air Conditioning Devices for the Participation in Demand Response Programs
Resumo:
Demand Response has been taking over the years an extreme importance. There’s a lot of demand response programs, one of them proposed in this paper, using air conditioners that could increase the power quality and decrease the spent money in many ways like: infrastructures and customers energy bill reduction. This paper proposes a method and a study on how air conditioners could integrate demand response programs. The proposed method has been modelled as an energy resources management optimization problem. This paper presents two case studies, the first one with all costumers participating and second one with some of costumers. The results obtained for both case studies have been analyzed.
Resumo:
Relationships between accuracy and speed of decision-making, or speed-accuracy tradeoffs (SAT), have been extensively studied. However, the range of SAT observed varies widely across studies for reasons that are unclear. Several explanations have been proposed, including motivation or incentive for speed vs. accuracy, species and modality but none of these hypotheses has been directly tested. An alternative explanation is that the different degrees of SAT are related to the nature of the task being performed. Here, we addressed this problem by comparing SAT in two odor-guided decision tasks that were identical except for the nature of the task uncertainty: an odor mixture categorization task, where the distinguishing information is reduced by making the stimuli more similar to each other; and an odor identification task in which the information is reduced by lowering the intensity over a range of three log steps. (...)
Resumo:
The jet energy scale (JES) and its systematic uncertainty are determined for jets measured with the ATLAS detector using proton–proton collision data with a centre-of-mass energy of s√=7 TeV corresponding to an integrated luminosity of 4.7 fb −1 . Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells using the anti- kt algorithm with distance parameters R=0.4 or R=0.6 , and are calibrated using MC simulations. A residual JES correction is applied to account for differences between data and MC simulations. This correction and its systematic uncertainty are estimated using a combination of in situ techniques exploiting the transverse momentum balance between a jet and a reference object such as a photon or a Z boson, for 20≤pjetT<1000 GeV and pseudorapidities |η|<4.5 . The effect of multiple proton–proton interactions is corrected for, and an uncertainty is evaluated using in situ techniques. The smallest JES uncertainty of less than 1 % is found in the central calorimeter region ( |η|<1.2 ) for jets with 55≤pjetT<500 GeV . For central jets at lower pT , the uncertainty is about 3 %. A consistent JES estimate is found using measurements of the calorimeter response of single hadrons in proton–proton collisions and test-beam data, which also provide the estimate for pjetT>1 TeV. The calibration of forward jets is derived from dijet pT balance measurements. The resulting uncertainty reaches its largest value of 6 % for low- pT jets at |η|=4.5 . Additional JES uncertainties due to specific event topologies, such as close-by jets or selections of event samples with an enhanced content of jets originating from light quarks or gluons, are also discussed. The magnitude of these uncertainties depends on the event sample used in a given physics analysis, but typically amounts to 0.5–3 %.
Resumo:
Scheduling, job shop, uncertainty, mixed (disjunctive) graph, stability analysis