988 resultados para ultrafast lasers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrafast passively mode-locked lasers with spectral tuning capability and high output power have widespread applications in biomedical research, spectroscopy and telecommunications [1,2]. Currently, the dominant technology is based on semiconductor saturable absorber mirrors (SESAMs) [2,3]. However, these typically have a narrow tuning range, and require complex fabrication and packaging [2,3]. A simple, cost-effective alternative is to use Single Wall Carbon Nanotubes (SWNTs) [4,10] and Graphene [10,14]. Wide-band operation is possible using SWNTs with a wide diameter distribution [5,10]. However, SWNTs not in resonance are not used and may contribute to unwanted insertion losses [10]. The linear dispersion of the Dirac electrons in graphene offers an ideal solution for wideband ultrafast pulse generation [10,15]. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrafast lasers play an increasingly important role in many applications. Nanotubes and graphene have emerged as promising novel saturable absorbers for passive mode-locking. Here, we review recent progress on the exploitation of these two carbon nanomaterials in ultrafast photonics. © 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon nanotube polycarbonate composites with controlled nanotube-bundle size are prepared by dispersion with conjugated polymers followed by blending with polycarbonate. The composite has uniform sub-micrometer nanotube bundles in high concentration, shows strong nonlinear optical absorption, and generates 193 fs pulses when used as passive mode-locker in a fiber laser.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Application of ultrafast lasers to chemistry and biology has been an active area of research in the international scene for over a decade for physical and biophysical chemists. Perhaps, ultrafast laser spectroscopy is one of the most versatile tools available today to experimentally study structure and dynamics in the time domain of nanoseconds (10(-9) sec) to femtoseconds (10(-15) sec). In this article we attempt to highlight some of the recent developments in ultrafast laser spectroscopy with particular reference to vibrational spectroscopy, viz. infrared and Raman spectroscopy, in the above time domain.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ultrafast lasers ablation of Cr film was investigated by using double-pulse method. Experimental results show that there exists a temporal ablation window effect with each of the double pulses adjusted just smaller than the threshold. When the delay between the double pulses is within the order of 400 ps, the ablation of Cr film could happen. When the delay between the double pulses is beyond the order of 400 ps, the ablation of Cr film would not happen, and the reflectivity from the surface of the Cr film shows a sharp rise at the same time. The two-temperature model was developed into the form of double pulses to explain the experimental phenomena. Furthermore, microbump structures were formed on the surface of Cr film after ablation by ultrafast double pulses. Their heights exhibit an obvious drop between 1 and 10 ps double pulses delay, which is involved with the electron-phonon coupling process according to the numerical simulation. These results should be helpful for understanding the dynamic processes during ultrafast lasers ablation of metal films. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ultrafast lasers play a key role in a variety of devices, from basic research to materials processing and medicine. Graphene has great potential as saturable absorber for ultrafast lasers. Here we present an overview of graphene-based ultrafast lasers, from solution processing of the raw materials, to their incorporation into polymers, device fabrication and testing. © 2011 The Japan Society of Applied Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Polymer composites are one of the most attractive near-term means to exploit the unique properties of carbon nanotubes and graphene. This is particularly true for composites aimed at electronics and photonics, where a number of promising applications have already been demonstrated. One such example is nanotube-based saturable absorbers. These can be used as all-optical switches, optical amplifier noise suppressors, or mode-lockers to generate ultrashort laser pulses. Here, we review various aspects of fabrication, characterization, device implementation and operation of nanotube-polymer composites to be used in photonic applications. We also summarize recent results on graphene-based saturable absorbers for ultrafast lasers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of reduced graphene oxide (RGO) and graphene nanoribbons (GNRs) as infrared photodetectors is explored, based on recent results dealing with solar cells, light-emitting devices, photodetectors, and ultrafast lasers. IR detection is demonstrated by both RGO and GNRs (see image) in terms of the time-resolved photocurrent and photoresponse. The responsivity of the detectors and their functioning are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

本文结合有限元方法和超快热弹性模型对飞秒激光辐射下形成的微突起结构进行了数值模拟研究。模拟结果表明微突起结构的形成与入射飞秒激光的参数以及材料的热弹性质有关。在圆锥状微突起结构的形状和高度方面,实验结果与模拟结果呈现良好的一致性,这也从实验上表明了超快热弹性模型的有效性。本文的研究将有助于利用超快激光对薄膜材料进行纳米构造。