943 resultados para two-dimensional correlation spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular interactions between microcrystalline cellulose (MCC) and water were investigated by attenuated total reflection infrared (ATR/IR) spectroscopy. Moisture-content-dependent IR spectra during a drying process of wet MCC were measured. In order to distinguish overlapping O–H stretching bands arising from both cellulose and water, principal component analysis (PCA) and, generalized two-dimensional correlation spectroscopy (2DCOS) and second derivative analysis were applied to the obtained spectra. Four typical drying stages were clearly separated by PCA, and spectral variations in each stage were analyzed by 2DCOS. In the drying time range of 0–41 min, a decrease in the broad band around 3390 cm−1 was observed, indicating that bulk water was evaporated. In the drying time range of 49–195 min, decreases in the bands at 3412, 3344 and 3286 cm−1 assigned to the O6H6cdots, three dots, centeredO3′ interchain hydrogen bonds (H-bonds), the O3H3cdots, three dots, centeredO5 intrachain H-bonds and the H-bonds in Iβ phase in MCC, respectively, were observed. The result of the second derivative analysis suggests that water molecules mainly interact with the O6H6cdots, three dots, centeredO3′ interchain H-bonds. Thus, the H-bonding network in MCC is stabilized by H-bonds between OH groups constructing O6H6cdots, three dots, centeredO3′ interchain H-bonds and water, and the removal of the water molecules induces changes in the H-bonding network in MCC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-dimensional infrared spectra of peptides are introduced that are the direct analogues of two- and three-pulse multiple quantum NMR. Phase matching and heterodyning are used to isolate the phase and amplitudes of the electric fields of vibrational photon echoes as a function of multiple pulse delays. Structural information is made available on the time scale of a few picoseconds. Line narrowed spectra of acyl-proline-NH2 and cross peaks implying the coupling between its amide-I modes are obtained, as are the phases of the various contributions to the signals. Solvent-sensitive structural differences are seen for the dipeptide. The methods show great promise to measure structure changes in biology on a wide range of time scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitration of tyrosine in proteins and peptides is a post-translational modification that occurs under conditions of oxidative stress. It is implicated in a variety of medical conditions, including neurodegenerative and cardiovascular diseases. However, monitoring tyrosine nitration and understanding its role in modifying biological function remains a major challenge. In this work, we investigate the use of electron-vibration-vibration (EVV) two-dimensional infrared (2DIR) spectroscopy for the study of tyrosine nitration in model peptides. We demonstrate the ability of EVV 2DIR spectroscopy to differentiate between the neutral and deprotonated states of 3-nitrotyrosine, and we characterize their spectral signatures using information obtained from quantum chemistry calculations and simulated EVV 2DIR spectra. To test the sensitivity of the technique, we use mixed-peptide samples containing various levels of tyrosine nitration, and we use mass spectrometry to independently verify the level of nitration. We conclude that EVV 2DIR spectroscopy is able to provide detailed spectroscopic information on peptide side-chain modifications and to detect nitration levels down to 1%. We further propose that lower nitration levels could be detected by introducing a resonant Raman probe step to increase the detection sensitivity of EVV 2DIR spectroscopy. (Graph Presented).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of saponins and the molluscicidal activity of the roots, leaves, seeds and fruits of Swartzia langsdorffii Raddi (Leguminosae) against Biomphalaria glabrata adults and eggs were investigated. The roots, seeds and fruits were macerated in 95% ethanol. These extracts exerted a significant molluscicidal activity against B. glabrata, up to a dilution of 100 mg/l. Four mixtures (A2, B2, C and D) of triterpenoid oleanane type saponins were chromatographically isolated from the seed and fruit extracts. Two known saponins (1 and 2) were identified as beta-D-glucopyranosyl-[alpha-L-rhamnopyranosyl-(1->3)- beta-D-glucuronopyranosyl-(1->3)]-3beta-hydroxyolean-12-ene-28 -oate, and beta-D-glucopyranosyl-(1->3)-beta-D-glucuronopyranosyl-(1 ->3)]-3beta-hydroxyolean-12-ene-28-oate, respectively. These two saponins were present in all the mixtures, together with other triterpenoid oleane type saponins, which were shown to be less polar, by reversed-phase HPLC. The saponin identifications were based on spectral evidence, including ¹H-¹H two-dimensional correlation spectroscopy, nuclear Overhauser and exchange spectroscopy, heteronuclear multiple quantum coherence, and heteronuclear multiple-bond connectivity experiments. The toxicity of S. langsdorffii saponins to non-target organisms was prescreened by the brine shrimp lethality test.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the basic theory of generalized two-dimensional correlation spectroscopy. This method is applicable to various types of spectroscopy, including Infrared, Near Infrared and Raman Spectroscopy and it emphasizes spectral features not readily observable in conventional one-dimensional spectra. Some applications are cited, including work developed in Brazil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Biofísica Molecular - IBILCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lo studio di cambiamenti strutturali inter o intramolecolari nei materiali polimerici può essere effettuato mediante la spettroscopia infrarossa associata a quella di correlazione bidimensionale (2D-COS, two-dimensional correlation spectroscopy). Questa tecnica, applicata a campioni del copolimero stirene-acrilonitrile (SAN) a diversa composizione, consente di interpretare variazioni spettrali riscontrate e l’andamento della temperatura di transizione vetrosa, Tg. L’applicazione della spettroscopia di correlazione bidimensionale (2D-COS) e l’analisi dell’intensità delle bande spettrali in funzione del contenuto di AN nel copolimero SAN, prevedono lo sviluppo di un metodo per correggere gli spettri IR da instabilità dovute alla linea di base e da variazioni derivanti dallo spessore dei film. A tal fine si sottopone lo spettro IR di ogni film di SAN alla correzione della linea di base e successivamente al processo di normalizzazione. La banda di vibrazione sottoposta ad analisi 2D-COS è quella corrispondente allo stretching del gruppo −C≡N in quanto presenta le maggiori variazioni in funzione della composizione del copolimero. La 2D-COS evidenzia che tali variazioni sono attribuibili alla variazione contemporanea di frequenza di assorbimento, larghezza e intensità di banda. A partire da questa osservazione si può dedurre la presenza nel materiale di un’interazione dipolo-dipolo di tipo intra-molecolare tra i gruppi nitrilici.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A question often posed in protein folding/unfolding studies is whether the process is fully cooperative or whether it contains sequential elements. To address this question, one needs tools capable of resolving different events. It seems that, at least in certain cases, two-dimensional (2D) IR correlation spectroscopy can provide answers to this question. To illustrate this point, we have turned to the Cro-V55C dimer of the λ Cro repressor, a protein known to undergo thermal unfolding in two discrete steps through a stable equilibrium intermediate. The secondary structure of this intermediate is compatible with that of a partially unfolded protein and involves a reorganization of the N terminus, whereas the antiparallel β-ribbon formed by the C-terminal part of each subunit remains largely intact. To establish whether the unfolding process involves sequential events, we have performed a 2D correlation analysis of IR spectra recorded over the temperature range of 20–95°C. The 2D IR correlation analysis indeed provides evidence for a sequential formation of the stable intermediate, which is created in three (closely related) steps. A first step entails the unfolding of the short N-terminal β-strand, followed by the unfolding of the α-helices in a second step, and the third step comprises the reorganization of the remaining β-sheet and of some unordered segments in the protein. The complete unfolding of the stable intermediate at higher temperatures also undergoes sequential events that ultimately end with the breaking of the H bonds between the two β-strands at the dimer interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adsorption of particles and surfactants at water-oil interfaces has attracted continuous attention because of its emulsion stabilizing effect and the possibility to form two-dimensional materials. Herein, I studied the interfacial diffusion of single molecules and nanoparticles at water-oil interfaces using fluorescence correlation spectroscopy. rnrnFluorescence correlation spectroscopy (FCS) is a promising technique to study diffusion of fluorescent tracers in diverse conditions. This technique monitors and analyzes the fluorescence fluctuation caused by single fluorescent tracers coming in and out of a diffraction-limited observation volume “one at a time”. Thus, this technique allows a combination of high precision, high spatial resolution and low tracer concentration. rnrnIn chapter 1, I discussed some controversial questions regarding the properties of water-hydrophobic interfaces and also introduced the current progress on the stability and dynamic of single nanoparticles at water-oil interfaces. The materials and setups I used in this thesis were summarized in chapter 2. rnrnIn chapter 3, I presented a new strategy to study the properties of water-oil interfaces. The two-dimensional diffusion of isolated molecular tracers at water/n-alkane interfaces was measured using fluorescence correlation spectroscopy. The diffusion coefficients of larger tracers with a hydrodynamic radius of 4.0 nm agreed well with the values calculated from the macroscopic viscosities of the two bulk phases. However, for small molecule tracers with hydrodynamic radii of only 1.0 and 0.6 nm, notable deviations were observed, indicating the existence of an interfacial region with a reduced effective viscosity. rnrnIn chapter 4, the interfacial diffusion of nanoparticles at water-oil interfaces was investigated using FCS. In stark contrast to the interfacial diffusion of molecular tracers, that of nanoparticles at any conditions is slower than the values calculated in accordance to the surrounding viscosity. The diffusion of nanoparticles at water-oil interfaces depended on the interfacial tension of liquid-liquid interfaces, the surface properties of nanoparticles, the particle sizes and the viscosities of surrounding liquid phases. In addition, the interfacial diffusion of nanoparticles with Janus motif is even slower than that of their symmetric counterparts. Based on the experimental results I obtained, I drew some possibilities to describe the origin of nanoparticle slowdown at water-oil interfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A form of two-dimensional (2D) vibrational spectroscopy, which uses two ultrafast IR laser pulses, is used to examine the structure of a cyclic penta-peptide in solution. Spectrally resolved cross peaks occur in the off-diagonal region of the 2D IR spectrum of the amide I region, analogous to those in 2D NMR spectroscopy. These cross peaks measure the coupling between the different amide groups in the structure. Their intensities and polarizations relate directly to the three-dimensional structure of the peptide. With the help of a model coupling Hamiltonian, supplemented by density functional calculations, the spectra of this penta-peptide can be regenerated from the known solution phase structure. This 2D-IR measurement, with an intrinsic time resolution of less than 1 ps, could be used in all time regimes of interest in biology.