128 resultados para trigonometric
Resumo:
We derive expressions for convolution multiplication properties of discrete cosine transform II (DCT II) starting from equivalent discrete Fourier transform (DFT) representations. Using these expressions, a method for implementing linear filtering through block convolution in the DCT II domain is presented. For the case of nonsymmetric impulse response, additional discrete sine transform II (DST II) is required for implementing the filter in DCT II domain, where as for a symmetric impulse response, the additional transform is not required. Comparison with recently proposed circular convolution technique in DCT II domain shows that the proposed new method is computationally more efficient.
Resumo:
We propose data acquisition from continuous-time signals belonging to the class of real-valued trigonometric polynomials using an event-triggered sampling paradigm. The sampling schemes proposed are: level crossing (LC), close to extrema LC, and extrema sampling. Analysis of robustness of these schemes to jitter, and bandpass additive gaussian noise is presented. In general these sampling schemes will result in non-uniformly spaced sample instants. We address the issue of signal reconstruction from the acquired data-set by imposing structure of sparsity on the signal model to circumvent the problem of gap and density constraints. The recovery performance is contrasted amongst the various schemes and with random sampling scheme. In the proposed approach, both sampling and reconstruction are non-linear operations, and in contrast to random sampling methodologies proposed in compressive sensing these techniques may be implemented in practice with low-power circuitry.
Resumo:
A series $S_a=\sum\limits_{n=-\infty}^\infty a_nz^n$ is called a {\it pointwise universal trigonometric series} if for any $f\in C(\T)$, there exists a strictly increasing sequence $\{n_k\}_{k\in\N}$ of positive integers such that $\sum\limits_{j=-n_k}^{n_k} a_jz^j$ converges to $f(z)$ pointwise on $\T$. We find growth conditions on coefficients allowing and forbidding the existence of a pointwise universal trigonometric series. For instance, if $|a_n|=O(\e^{\,|n|\ln^{-1-\epsilon}\!|n|})$ as $|n|\to\infty$ for some $\epsilon>0$, then the series $S_a$ can not be pointwise universal. On the other hand, there exists a pointwise universal trigonometric series $S_a$ with $|a_n|=O(\e^{\,|n|\ln^{-1}\!|n|})$ as $|n|\to\infty$.
Resumo:
The problem of neutral fermions subject to a pseudoscalar potential is investigated. Apart from the solutions for E = +/- mc(2), the problem is mapped into the Sturm-Liouville equation. The case of a singular trigonometric tangent potential (similar to tan gamma x) is exactly solved and the complete set of solutions is discussed in some detail. It is revealed that this intrinsically relativistic and true confining potential is able to localize fermions into a region of space arbitrarily small without the menace of particle-antiparticle production.
Resumo:
We show how Szego polynomials can be used in the theory of truncated trigonometric moment problem.
Resumo:
An extremal problem for the coefficients of sine polynomials, which are nonnegative in [0,π] , posed and discussed by Rogosinski and Szego is under consideration. An analog of the Fejér-Riesz representation of nonnegative general trigonometric and cosine polynomials is proved for nonnegative sine polynomials. Various extremal sine polynomials for the problem of Rogosinski and Szego are obtained explicitly. Associated cosine polynomials k n (θ) are constructed in such a way that { k n (θ) } are summability kernels. Thus, the L p , pointwise and almost everywhere convergence of the corresponding convolutions, is established. © 2002 Springer-Verlag New York Inc.
Resumo:
Quaternionic theory has greatly been developed in recent years [1-12]. Thus, in our view, the study of trigonometric and logarithmic type quaternionic functions is important for the determination and realization of a hyper complex theory. In this paper, we intend to give a geometrical foundation for both logarithmic and trigonometric hyper complex functions based on the exponential function of quaternionic type recently introduced by Borges, Marão and Machado in their paper entitled Geometrical octonions II: Hyper regularity and hyper periodicity of the exponential function appearing. © 2011 Pushpa Publishing House.
Resumo:
We have conducted a program of trigonometric distance measurements to 13 members of the TW Hydrae Association (TWA), which will enable us (through back-tracking methods) to derive a convincing estimate of the age of the association, independent of stellar evolutionary models. With age, distance, and luminosity known for an ensemble of TWA stars and brown dwarfs, models of early stellar evolution (which are still uncertain for young ages and substellar masses) will then be constrained by observations over a wide range of masses (0.025 to 0.7 M⊙).
Resumo:
The thesis is concerned with local trigonometric regression methods. The aim was to develop a method for extraction of cyclical components in time series. The main results of the thesis are the following. First, a generalization of the filter proposed by Christiano and Fitzgerald is furnished for the smoothing of ARIMA(p,d,q) process. Second, a local trigonometric filter is built, with its statistical properties. Third, they are discussed the convergence properties of trigonometric estimators, and the problem of choosing the order of the model. A large scale simulation experiment has been designed in order to assess the performance of the proposed models and methods. The results show that local trigonometric regression may be a useful tool for periodic time series analysis.
Resumo:
"Copyright, 1913 and 1920 ... Revised edition published August 1920. Reprinted April, 1924 ... June, 1935."
Resumo:
Mode of access: Internet.
Resumo:
Biography on verso of each portrait.
Resumo:
Bibliography: p. 227.
Resumo:
Mode of access: Internet.
Resumo:
Using generalized collocation techniques based on fitting functions that are trigonometric (rather than algebraic as in classical integrators), we develop a new class of multistage, one-step, variable stepsize, and variable coefficients implicit Runge-Kutta methods to solve oscillatory ODE problems. The coefficients of the methods are functions of the frequency and the stepsize. We refer to this class as trigonometric implicit Runge-Kutta (TIRK) methods. They integrate an equation exactly if its solution is a trigonometric polynomial with a known frequency. We characterize the order and A-stability of the methods and establish results similar to that of classical algebraic collocation RK methods. (c) 2006 Elsevier B.V. All rights reserved.