Local Trigonometric Methods for Time Series Smoothing.


Autoria(s): Gentile, Maria
Contribuinte(s)

Luati, Alessandra

Data(s)

15/05/2014

Resumo

The thesis is concerned with local trigonometric regression methods. The aim was to develop a method for extraction of cyclical components in time series. The main results of the thesis are the following. First, a generalization of the filter proposed by Christiano and Fitzgerald is furnished for the smoothing of ARIMA(p,d,q) process. Second, a local trigonometric filter is built, with its statistical properties. Third, they are discussed the convergence properties of trigonometric estimators, and the problem of choosing the order of the model. A large scale simulation experiment has been designed in order to assess the performance of the proposed models and methods. The results show that local trigonometric regression may be a useful tool for periodic time series analysis.

Formato

application/pdf

Identificador

http://amsdottorato.unibo.it/6494/1/Maria_Gentile_PhD_Thesis.pdf

urn:nbn:it:unibo-12879

Gentile, Maria (2014) Local Trigonometric Methods for Time Series Smoothing. , [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Metodologia statistica per la ricerca scientifica <http://amsdottorato.unibo.it/view/dottorati/DOT276/>, 26 Ciclo. DOI 10.6092/unibo/amsdottorato/6494.

Idioma(s)

en

Publicador

Alma Mater Studiorum - Università di Bologna

Relação

http://amsdottorato.unibo.it/6494/

Direitos

info:eu-repo/semantics/openAccess

Palavras-Chave #SECS-S/01 Statistica
Tipo

Tesi di dottorato

NonPeerReviewed