Local Trigonometric Methods for Time Series Smoothing.
Contribuinte(s) |
Luati, Alessandra |
---|---|
Data(s) |
15/05/2014
|
Resumo |
The thesis is concerned with local trigonometric regression methods. The aim was to develop a method for extraction of cyclical components in time series. The main results of the thesis are the following. First, a generalization of the filter proposed by Christiano and Fitzgerald is furnished for the smoothing of ARIMA(p,d,q) process. Second, a local trigonometric filter is built, with its statistical properties. Third, they are discussed the convergence properties of trigonometric estimators, and the problem of choosing the order of the model. A large scale simulation experiment has been designed in order to assess the performance of the proposed models and methods. The results show that local trigonometric regression may be a useful tool for periodic time series analysis. |
Formato |
application/pdf |
Identificador |
http://amsdottorato.unibo.it/6494/1/Maria_Gentile_PhD_Thesis.pdf urn:nbn:it:unibo-12879 Gentile, Maria (2014) Local Trigonometric Methods for Time Series Smoothing. , [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Metodologia statistica per la ricerca scientifica <http://amsdottorato.unibo.it/view/dottorati/DOT276/>, 26 Ciclo. DOI 10.6092/unibo/amsdottorato/6494. |
Idioma(s) |
en |
Publicador |
Alma Mater Studiorum - Università di Bologna |
Relação |
http://amsdottorato.unibo.it/6494/ |
Direitos |
info:eu-repo/semantics/openAccess |
Palavras-Chave | #SECS-S/01 Statistica |
Tipo |
Tesi di dottorato NonPeerReviewed |