986 resultados para transport-measurements
Resumo:
In the present work the aim was to prepare an automatic installation for studies of galvanomagnetic effects in solids and to test it by calibration measurements. As a result required automatic installation was created in this work and test measurements were performed. Created setup automatically provides measurements of the magnetoresistance of the Hall effect with an accuracy of ± 2 µV in the temperature range 2 – 300 K and steady magnetic fields up to 6 T. The test measurements of the glassy carbon samples showed that the setup is reliable, has high sensitivity and is easy to use. The results obtained in the research process are pioneer and will be separately analyzed.
Resumo:
This thesis investigates phenomena of vortex dynamics in type II superconductors depending on the dimensionality of the flux-line system and the strength of the driving force. In the low dissipative regime of Bi_2Sr_2CaCu_2O_{8+delta} (BSCCO) the influence of oxygen stoichiometry on flux-line tension was examined. An entanglement crossover of the vortex system at low magnetic fields was identified and a comprehensive B-T phase diagram of solid and fluid phases derived.In YBa_2Cu_3O_7 (YBCO) extremely long (>100 mm) high-quality measurement bridges allowed to extend the electric-field window in transport measurements by up to three orders of magnitude. Complementing analyses of the data conclusively produced dynamic exponents of the glass transition z~9 considerably higher than theoretically predicted and previously reported. In high-dissipative measurements a voltage instability appearing in the current-voltage characteristics of type II superconductors was observed for the first time in BSCCO and shown to result from a Larkin-Ovchinnikov flux-flow vortex instability under the influence of quasi-particle heating. However, in an analogous investigation of YBCO the instability was found to appear only in the temperature and magnetic-field regime of the vortex-glass state. Rapid-pulse measurements fully confirmed this correlation of vortex glass and instability in YBCO and revealed a constant rise time (~µs).
Resumo:
The transport properties of the ""inverted"" semiconductor HgTe-based quantum well, recently shown to be a two-dimensional topological insulator, are studied experimentally in the diffusive regime. Nonlocal transport measurements are performed in the absence of magnetic field, and a large signal due to the edge states is observed. This shows that the edge states can propagate over a long distance, similar to 1 mm, and therefore, there is no difference between local and nonlocal electrical measurements in a topological insulator. In the presence of an in-plane magnetic field a strong decrease of the local resistance and complete suppression of the nonlocal resistance is observed. We attribute this behavior to an in-plane magnetic-field-induced transition from the topological insulator state to a conventional bulk metal state.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The understanding of the coupling between superconducting YBa2Cu3O7 (YBCO) layers decoupled by non superconducting PrBa2Cu3O7 (PBCO) layers in c-axis oriented superlattices was the aim of this thesis. For this purpose two conceptually different kind of transport experiments have been performed. rnrnIn the first type of transport experiments the current is flowing parallel to the layers. Here the coupling is probed indirectly using magnetic vortex lines, which are penetrating the superlattice. Movement of the vortex segments in neighbouring YBCO layers is more or less coherent depending on the thickness of both the superconducting and non superconducting layers. This in-plane transport was measured either by sending an external current through bridges patterned in the superlattice or by an induced internal current. rnThe vortex-creep activation energy U was determined by analysis of the in-plane resistive transition in an external magnetic field B oriented along the c-axis. The activation energies for two series of superlattices were investigated. In one series the thickness of the YBCO layers was constant (nY=4 unit cells) and the number of the PBCO unit cells was varied, while in the other the number of PBCO layers was constant (nP=4) and nY varied. The correlation length of the vortex system was determined to be 80 nm along the c-axis direction. It was found that even a single PBCO unit cell in a superlattice effectively cuts the flux lines into shorter weakly coupled segments, and the coupling of the vortex systems in neighbouring layers is negligible already for a thickness of four unit cells of the PBCO layers. A characteristic variation of the activation energy for the two series of superlattices was found, where U0 is proportional to the YBCO thickness. A change in the variation of U0 with the current I in the specimen was observed, which can be explained in terms of a crossover in the vortex creep process, generated by the transport current. At low I values the dislocations mediated (plastic) vortex creep leads to thermally assisted flux-flow behaviour, whereas at high current the dc transport measurements are dominated by elastic (collective) creep.rnThe analysis of standard dc magnetization relaxation data obtained for a series superlattices revealed the occurrence of a crossover from elastic (collective) vortex creep at low temperature to plastic vortex creep at high T. The crossover is generated by the T dependent macroscopic currents induced in the sample. The existence of this creep crossover suggests that, compared with the well known Maley technique, the use of the normalized vortex creep activation energy is a better solution for the determination of vortex creep parameters.rnrnThe second type of transport experiments was to measure directly a possible Josephson coupling between superconducting CuO2 double planes in the superlattices by investigation of the transport properties perpendicular to the superconducting planes. Here three different experiments have been performed. The first one was to pattern mesa structures photolithographically as in previous works. The second used three-dimensional nanostructures cut by a focused ion beam. For the these two experiments insufficient patterning capabilities prevented an observation of the Josephson effect in the current voltage curves. rnA third experiment used a-axis and (110) oriented YBCO films, where in-plane patterning can in principle be sufficient to measure transport perpendicular to the superconducting planes. Therefore the deposition of films with this unusual growth orientation was optimized and investigated. The structural and microstructural evolution of c-axis to a-axis orientation was monitored using x-ray diffraction, scanning electron microscopy and magnetization measurements. Films with full a-axis alignment parallel to the substrate normal could be achieved on (100)SrTiO3. Due to the symmetry of the substrate the c-axis direction in-plane is twofold. Transferring the deposition conditions to films grown on (110)SrTiO3 allowed the growth of (110) oriented YBCO films with a unique in-plane c-axis orientation. While these films were of high quality by crystallographic and macroscopic visual inspection, electron microscopy revealed a coherent crack pattern on a nanoscale. Therefore the actual current path in the sample was not determined by the macroscopic patterning which prohibited investigations of the in-plane anisotropy in this case.rn
Resumo:
This thesis presents a study of the charge generation, transport, and recombination processes in organic solar cells performed with time-resolved experimental techniques. Organic solar cells based on polymers can be solution-processed on large areas and thus promise to become an inexpensive source of renewable energy. Despite significant improvements of the power conversion efficiency over the last decade, the fundamental working principles of organic solar cells are still not fully understood. It is the aim of this thesis to clarify the role of different performance limiting processes in organic solar cells and to correlate them with the molecular structure of the studied materials, i.e. poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM). By combining time-of-flight charge transport measurements, transient absorption spectroscopy, a newly developed experimental technique called time delayed double pulse experiment and drift-diffusion simulations a comprehensive analysis of the working principles of P3HT:PCBM solar cells could be performed. It was found that the molecular structure of P3HT (i.e. the regioregularity) has a pronounced influence on the morphology of thin films of pristine P3HT and of blends of P3HT with PCBM. This morphology in turn affected the charge transport properties as well as the charge generation and recombination kinetics. Well-ordered regioregular P3HT was found to be characterized by a high charge carrier mobility, efficient charge generation and low but field-dependent (non-geminate) recombination. Importantly, the charge generation yield was found to be independent of temperature and applied electric field as opposed to the expectations of the Onsager-Braun model that is commonly applied to describe the temperature and field dependence of charge generation in organic solar cells. These properties resulted in a reasonably good power conversion efficiency. In contrast to this, amorphous regiorandom P3HT was found to show poor charge generation, transport and recombination properties that combine to a much lower power conversion efficiency.
Resumo:
The work described in this thesis had two objectives. The first objective was to develop a physically based computational model that could be used to predict the electronic conductivity, Seebeck coefficient, and thermal conductivity of Pb1-xSnxTe alloys over the 400 K to 700 K temperature as a function of Sn content and doping level. The second objective was to determine how the secondary phase inclusions observed in Pb1-xSnxTe alloys made by consolidating mechanically alloyed elemental powders impact the ability of the material to harvest waste heat and generate electricity in the 400 K to 700 K temperature range. The motivation for this work was that though the promise of this alloy as an unusually efficient thermoelectric power generator material in the 400 K to 700 K range had been demonstrated in the literature, methods to reproducibly control and subsequently optimize the materials thermoelectric figure of merit remain elusive. Mechanical alloying, though not typically used to fabricate these alloys, is a potential method for cost-effectively engineering these properties. Given that there are deviations from crystalline perfection in mechanically alloyed material such as secondary phase inclusions, the question arises as to whether these defects are detrimental to thermoelectric function or alternatively, whether they enhance thermoelectric function of the alloy. The hypothesis formed at the onset of this work was that the small secondary phase SnO2 inclusions observed to be present in the mechanically alloyed Pb1-xSnxTe would increase the thermoelectric figure of merit of the material over the temperature range of interest. It was proposed that the increase in the figure of merit would arise because the inclusions in the material would not reduce the electrical conductivity to as great an extent as the thermal conductivity. If this were to be true, then the experimentally measured electronic conductivity in mechanically alloyed Pb1-xSnxTe alloys that have these inclusions would not be less than that expected in alloys without these inclusions while the portion of the thermal conductivity that is not due to charge carriers (the lattice thermal conductivity) would be less than what would be expected from alloys that do not have these inclusions. Furthermore, it would be possible to approximate the observed changes in the electrical and thermal transport properties using existing physical models for the scattering of electrons and phonons by small inclusions. The approach taken to investigate this hypothesis was to first experimentally characterize the mobile carrier concentration at room temperature along with the extent and type of secondary phase inclusions present in a series of three mechanically alloyed Pb1-xSnxTe alloys with different Sn content. Second, the physically based computational model was developed. This model was used to determine what the electronic conductivity, Seebeck coefficient, total thermal conductivity, and the portion of the thermal conductivity not due to mobile charge carriers would be in these particular Pb1-xSnxTe alloys if there were to be no secondary phase inclusions. Third, the electronic conductivity, Seebeck coefficient and total thermal conductivity was experimentally measured for these three alloys with inclusions present at elevated temperatures. The model predictions for electrical conductivity and Seebeck coefficient were directly compared to the experimental elevated temperature electrical transport measurements. The computational model was then used to extract the lattice thermal conductivity from the experimentally measured total thermal conductivity. This lattice thermal conductivity was then compared to what would be expected from the alloys in the absence of secondary phase inclusions. Secondary phase inclusions were determined by X-ray diffraction analysis to be present in all three alloys to a varying extent. The inclusions were found not to significantly degrade electrical conductivity at temperatures above ~ 400 K in these alloys, though they do dramatically impact electronic mobility at room temperature. It is shown that, at temperatures above ~ 400 K, electrons are scattered predominantly by optical and acoustical phonons rather than by an alloy scattering mechanism or the inclusions. The experimental electrical conductivity and Seebeck coefficient data at elevated temperatures were found to be within ~ 10 % of what would be expected for material without inclusions. The inclusions were not found to reduce the lattice thermal conductivity at elevated temperatures. The experimentally measured thermal conductivity data was found to be consistent with the lattice thermal conductivity that would arise due to two scattering processes: Phonon phonon scattering (Umklapp scattering) and the scattering of phonons by the disorder induced by the formation of a PbTe-SnTe solid solution (alloy scattering). As opposed to the case in electrical transport, the alloy scattering mechanism in thermal transport is shown to be a significant contributor to the total thermal resistance. An estimation of the extent to which the mean free time between phonon scattering events would be reduced due to the presence of the inclusions is consistent with the above analysis of the experimental data. The first important result of this work was the development of an experimentally validated, physically based computational model that can be used to predict the electronic conductivity, Seebeck coefficient, and thermal conductivity of Pb1-xSnxTe alloys over the 400 K to 700 K temperature as a function of Sn content and doping level. This model will be critical in future work as a tool to first determine what the highest thermoelectric figure of merit one can expect from this alloy system at a given temperature and, second, as a tool to determine the optimum Sn content and doping level to achieve this figure of merit. The second important result of this work is the determination that the secondary phase inclusions that were observed to be present in the Pb1-xSnxTe made by mechanical alloying do not keep the material from having the same electrical and thermal transport that would be expected from “perfect" single crystal material at elevated temperatures. The analytical approach described in this work will be critical in future investigations to predict how changing the size, type, and volume fraction of secondary phase inclusions can be used to impact thermal and electrical transport in this materials system.
Resumo:
The possible existence of a sign-changing gap symmetry in BaFe2As2-derived superconductors (SC) has been an exciting topic of research in the last few years. To further investigate this subject we combine Electron Spin Resonance (ESR) and pressure-dependent transport measurements to investigate magnetic pair-breaking effects on BaFe1.9M0.1As2 (M = Mn, Co, Cu, and Ni) single crystals. An ESR signal, indicative of the presence of localized magnetic moments, is observed only for M = Cu and Mn compounds, which display very low SC transition temperature (Tc) and no SC, respectively. From the ESR analysis assuming the absence of bottleneck effects, the microscopic parameters are extracted to show that this reduction of Tc cannot be accounted by the Abrikosov-Gorkov pair-breaking expression for a sign-preserving gap function. Our results reveal an unconventional spin- and pressure-dependent pair-breaking effect and impose strong constraints on the pairing symmetry of these materials.
Resumo:
This investigation presents a comprehensive characterization of magnetic and transport properties of an interesting superconducting wire, Nb-Ti -Ta, obtained through the solid-state diffusion between Nb-12 at.% Ta alloy and pure Ti. The physical properties obtained from magnetic and transport measurements related to the microstructure unambiguously confirmed a previous proposition that the superconducting currents flow in the center of the diffusion layer, which has a steep composition variation. The determination of the critical field also confirmed that the flux line core size is not constant, and in addition it was possible to determine that, in the center of the layer, the flux line core is smaller than at the borders. A possible core shape design is proposed. Among the wires studied, the one that presented the best critical current density was achieved for a diffusion layer with a composition of about Nb-32% Ti-10% Ta, obtained with a heat treatment at 700 degrees C during 120 h, in agreement with previous studies. It was determined that this wire has the higher upper critical field, indicating that the optimization of the superconducting behavior is related to an intrinsic property of the ternary alloy.
Resumo:
Magneto-transport measurements of the 2D hole system (2DHS) in p-type Si-Si1-xGex heterostructures identify the integer quantum Hall effect (IQHE) at dominantly odd-integer filling factors v and two low-temperature insulating phases (IPs) at v = 1.5 and v less than or similar to 0.5, with re-entrance to the quantum Hall effect at v = 1. The temperature dependence, current-voltage characteristics, and tilted field and illumination responses of the IP at v = 1.5 indicate that the important physics is associated with an energy degeneracy of adjacent Landau levels of opposite spin, which provides a basis for consideration of an intrinsic, many-body origin.
Resumo:
We report an investigation on the optical properties of Cu3Ge thin films displaying very high conductivity, with thickness ranging from 200 to 2000 Å, deposited on Ge substrates. Reflectance, transmittance, and ellipsometric spectroscopy measurements were performed at room temperature in the 0.01-6.0, 0.01-0.6, and 1.4-5.0 eV energy range, respectively. The complex dielectric function, the optical conductivity, the energy-loss function, and the effective charge density were obtained over the whole spectral range. The low-energy free-carrier response was well fitted by using the classical Drude-Lorentz dielectric function. A simple two-band model allowed the resulting optical parameters to be interpreted coherently with those previously obtained from transport measurements, hence yielding the densities and the effective masses of electrons and holes.
Resumo:
In this work, superconducting YBa2 Cu3O6+x (YBCO) thin films have been studied with the experimental focus on the anisotropy of BaZrO3 (BZO) doped YBCOthin films and the theoretical focus on modelling flux pinning by numerically solving Ginzburg- Landau equations. Also, the structural properties of undoped YBCO thin films grown on NdGaO3 (NGO) and MgO substrates were investigated. The thin film samples were made by pulsed laser ablation on single crystal substrates. The structural properties of the thin films were characterized by X-ray diffraction and atomic force microscope measurements. The superconducting properties were investigated with a magnetometer and also with transport measurements in pulsed magnetic field up to 30 T. Flux pinning was modelled by restricting the value of the order parameter inside the columnar pinning sites and then solving the Ginzburg-Landau equations numerically with the restrictions in place. The computations were done with a parallel code on a supercomputer. The YBCO thin films were seen to develop microcracks when grown on NGO or MgO substrates. The microcrack formation was connected to the structure of the YBCO thin films in both cases. Additionally, the microcracks can be avoided by careful optimization of the deposition parameters and the film thickness. The BZO doping of the YBCO thin films was seen to decrease the effective electron mass anisotropy, which was seen by fitting the Blatter scaling to the angle dependence of the upper critical field. The Ginzburg-Landau simulations were able to reproduce the measured magnetic field dependence of the critical current density for BZO doped and undoped YBCO. The simulations showed that in addition to the large density also the large size of the BZO nanorods is a key factor behind the change in the power law behaviour between BZO doped and undoped YBCO. Additionally, the Ginzburg-Landau equations were solved for type I thin films where giant vortices were seen to appear depending on the film thickness. The simulations predicted that singly quantized vortices are stable in type I films up to quite large thicknesses and that the size of the vortices increases with decreasing film thickness, in a way that is similar to the behaviour of the interaction length of Pearl vortices.
Resumo:
/c-(BETS)2FeBr4 is the first antiferromagnetic organic superconductor with successive antiferromagnetic and superconducting transitions at Ta^=2.5K and Tc=l.lK respectively at ambient pressure. Polarized reflectance measurements were performed on three single crystalsamples of this material using a Briiker IFS66V/S Interferometer, and a Bolometer detector or an MCT detector, at seven temperatures between 4K and 300K, in both the far-infrared and mid-infrared frequency range. After the reflectance results were obtained, the Kramers-Kronig dispersion relation was apphed to determine the optical conductivity of /c-(BETS)2FeBr4 at these seven temperatures. Additionally, the optical conductivity spectra were fitted with a Drude/Lorentz Oscillator model in order to study the evolution of the optical conductivity with temperature along the a-axis and c-axis. The resistivities calculated from the Drude model parameters along the a-axis and c-axis agreed reasonably with previous transport measurements.
Resumo:
A combination of structural, physical and computational techniques including powder X-ray and neutron diffraction, SQUID magnetometry, electrical and thermal transport measurements, DFT calculations and 119Sn Mössbauer and X-ray photoelec-tron spectroscopies has been applied to Co3Sn2-xInxS2 (0 ≤ x ≤ 2) in an effort to understand the relationship between metal-atom ordering and physical properties as the Fermi level is systematically varied. Whilst solid solution behavior is found throughout the composition region, powder neutron diffraction reveals that indium preferentially occupies an inter-layer site over an alternative kagome-like intra-layer site. DFT calculations indicate that this ordering, which leads to a lowering of energy, is related to the dif-fering bonding properties of tin and indium. Spectroscopic data suggest that throughout the composition range 0 ≤ x ≤ 2, all ele-ments adopt oxidation states that are significantly reduced from expectations based on formal charges. Chemical substitution ena-bles the electrical transport properties to be controlled through tuning of the Fermi level within a region of the density of states, which comprises narrow bands of predominantly Co d-character. This leads to a compositionally-induced double metal-to-semiconductor-to-metal transition. The marked increase in the Seebeck coefficient as the semiconducting region is approached leads to a substantial improvement in the thermoelectric figure of merit, ZT, which exhibits a maximum of ZT = 0.32 at 673 K. At 425 K, the figure of merit for phases in the region 0.8 ≤ x ≤ 0.85 is amongst the highest reported for sulphide phases, suggesting these materials may have applications in low-grade waste heat recovery.
Resumo:
The physical properties of the La(0.6)Y(0.1)Ca(0.3)MnO(3) compound have been investigated, focusing on the magnetoresistance phenomenon studied by both dc and ac electrical transport measurements. X-ray diffraction and scanning electron microscopy analysis of ceramic samples prepared by the sol-gel method revealed that specimens are single phase and have average grain size of similar to 0.5 mu m. Magnetization and 4-probe dc electrical resistivity rho(T,H) experiments showed that a ferromagnetic transition at T(C) similar to 170 K is closely related to a metal-insulator (MI) transition occurring at essentially the same temperature T(MI). The magnetoresistance effect was found to be more pronounced at low applied fields (H <= 2.5 T) and temperatures close to the MI transition. The ac electrical transport was investigated by impedance spectroscopy Z(f,T,H) under applied magnetic field H up to 1 T. The Z(f,T,H) data exhibited two well-defined relaxation processes that exhibit different behaviors depending on the temperature and applied magnetic field. Pronounced effects were observed close to T (C) and were associated with the coexistence of clusters with different electronic and magnetic properties. In addition, the appreciable decrease of the electrical permittivity epsilon`(T,H) is consistent with changes in the concentration of e(g) mobile holes, a feature much more pronounced close to T (C).