999 resultados para translation invariant


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new approach to recognition of images using invariant features based on higher-order spectra is presented. Higher-order spectra are translation invariant because translation produces linear phase shifts which cancel. Scale and amplification invariance are satisfied by the phase of the integral of a higher-order spectrum along a radial line in higher-order frequency space because the contour of integration maps onto itself and both the real and imaginary parts are affected equally by the transformation. Rotation invariance is introduced by deriving invariants from the Radon transform of the image and using the cyclic-shift invariance property of the discrete Fourier transform magnitude. Results on synthetic and actual images show isolated, compact clusters in feature space and high classification accuracies

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Concepts of constant absolute risk aversion and constant relative risk aversion have proved useful in the analysis of choice under uncertainty, but are quite restrictive, particularly when they are imposed jointly. A generalization of constant risk aversion, referred to as invariant risk aversion is developed. Invariant risk aversion is closely related to the possibility of representing preferences over state-contingent income vectors in terms of two parameters, the mean and a linearly homogeneous, translation-invariant index of riskiness. The best-known index with such properties is the standard deviation. The properties of the capital asset pricing model, usually expressed in terms of the mean and standard deviation, may be extended to the case of general invariant preferences. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An approach to pattern recognition using invariant parameters based on higher-order spectra is presented. In particular, bispectral invariants are used to classify one-dimensional shapes. The bispectrum, which is translation invariant, is integrated along straight lines passing through the origin in bifrequency space. The phase of the integrated bispectrum is shown to be scale- and amplification-invariant. A minimal set of these invariants is selected as the feature vector for pattern classification. Pattern recognition using higher-order spectral invariants is fast, suited for parallel implementation, and works for signals corrupted by Gaussian noise. The classification technique is shown to distinguish two similar but different bolts given their one-dimensional profiles

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new approach to pattern recognition using invariant parameters based on higher order spectra is presented. In particular, invariant parameters derived from the bispectrum are used to classify one-dimensional shapes. The bispectrum, which is translation invariant, is integrated along straight lines passing through the origin in bifrequency space. The phase of the integrated bispectrum is shown to be scale and amplification invariant, as well. A minimal set of these invariants is selected as the feature vector for pattern classification, and a minimum distance classifier using a statistical distance measure is used to classify test patterns. The classification technique is shown to distinguish two similar, but different bolts given their one-dimensional profiles. Pattern recognition using higher order spectral invariants is fast, suited for parallel implementation, and has high immunity to additive Gaussian noise. Simulation results show very high classification accuracy, even for low signal-to-noise ratios.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A framework for the simultaneous localization and recognition of dynamic hand gestures is proposed. At the core of this framework is a dynamic space-time warping (DSTW) algorithm, that aligns a pair of query and model gestures in both space and time. For every frame of the query sequence, feature detectors generate multiple hand region candidates. Dynamic programming is then used to compute both a global matching cost, which is used to recognize the query gesture, and a warping path, which aligns the query and model sequences in time, and also finds the best hand candidate region in every query frame. The proposed framework includes translation invariant recognition of gestures, a desirable property for many HCI systems. The performance of the approach is evaluated on a dataset of hand signed digits gestured by people wearing short sleeve shirts, in front of a background containing other non-hand skin-colored objects. The algorithm simultaneously localizes the gesturing hand and recognizes the hand-signed digit. Although DSTW is illustrated in a gesture recognition setting, the proposed algorithm is a general method for matching time series, that allows for multiple candidate feature vectors to be extracted at each time step.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Réalisé en cotutelle avec l'Université Paris-Diderot.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are various situations in which it is natural to ask whether a given collection of k functions, ρ j (r 1,…,r j ), j=1,…,k, defined on a set X, are the first k correlation functions of a point process on X. Here we describe some necessary and sufficient conditions on the ρ j ’s for this to be true. Our primary examples are X=ℝ d , X=ℤ d , and X an arbitrary finite set. In particular, we extend a result by Ambartzumian and Sukiasian showing realizability at sufficiently small densities ρ 1(r). Typically if any realizing process exists there will be many (even an uncountable number); in this case we prove, when X is a finite set, the existence of a realizing Gibbs measure with k body potentials which maximizes the entropy among all realizing measures. We also investigate in detail a simple example in which a uniform density ρ and translation invariant ρ 2 are specified on ℤ; there is a gap between our best upper bound on possible values of ρ and the largest ρ for which realizability can be established.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An integration by parts formula is derived for the first order differential operator corresponding to the action of translations on the space of locally finite simple configurations of infinitely many points on Rd. As reference measures, tempered grand canonical Gibbs measures are considered corresponding to a non-constant non-smooth intensity (one-body potential) and translation invariant potentials fulfilling the usual conditions. It is proven that such Gibbs measures fulfill the intuitive integration by parts formula if and only if the action of the translation is not broken for this particular measure. The latter is automatically fulfilled in the high temperature and low intensity regime.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The design of translation invariant and locally defined binary image operators over large windows is made difficult by decreased statistical precision and increased training time. We present a complete framework for the application of stacked design, a recently proposed technique to create two-stage operators that circumvents that difficulty. We propose a novel algorithm, based on Information Theory, to find groups of pixels that should be used together to predict the Output Value. We employ this algorithm to automate the process of creating a set of first-level operators that are later combined in a global operator. We also propose a principled way to guide this combination, by using feature selection and model comparison. Experimental results Show that the proposed framework leads to better results than single stage design. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The design of binary morphological operators that are translation-invariant and locally defined by a finite neighborhood window corresponds to the problem of designing Boolean functions. As in any supervised classification problem, morphological operators designed from a training sample also suffer from overfitting. Large neighborhood tends to lead to performance degradation of the designed operator. This work proposes a multilevel design approach to deal with the issue of designing large neighborhood-based operators. The main idea is inspired by stacked generalization (a multilevel classifier design approach) and consists of, at each training level, combining the outcomes of the previous level operators. The final operator is a multilevel operator that ultimately depends on a larger neighborhood than of the individual operators that have been combined. Experimental results show that two-level operators obtained by combining operators designed on subwindows of a large window consistently outperform the single-level operators designed on the full window. They also show that iterating two-level operators is an effective multilevel approach to obtain better results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A multi-resolution image matching technique based on translation invariant discrete multi-wavelet transform followed by a coarse to fine matching strategy is presented. The technique addresses the estimation of optimal corresponding points and the corresponding disparity maps in the presence of occlusion, ambiguity and illuminative variations in the two perspective views taken by two different cameras or at different lighting conditions. The problem of occlusion and ambiguity is addressed explicitly by a geometric optimization approach along with the uniqueness constraint whereas the illuminative variation is dealt with by using windowed normalized correlation on the discrete multi-wavelet coefficients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A multi-resolution technique for matching a stereo pair of images based on translation invariant discrete multi-wavelet transform is presented. The technique uses the well known coarse to fine strategy, involving the calculation of matching points at the coarsest level with consequent refinement up to the finest level. Vector coefficients of the wavelet transform modulus are used as matching features, where modulus maxima defines the shift invariant high-level features (multiscale edges) with phase pointing to the normal of the feature surface. The technique addresses the estimation of optimal corresponding points and the corresponding 2D disparity maps. Illuminative variation that can exist between the perspective views of the same scene is controlled using scale normalization at each decomposition level by dividing the details space coefficients with approximation space and then using normalized correlation. The problem of ambiguity, explicitly, and occlusion, implicitly, is addressed by using a geometric topological refinement procedure and symbolic tagging.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we establish the connections between two different extensions of Z(4)-linearity for binary Hamming spaces, We present both notions - propelinearity and G-linearity - in the context of isometries and group actions, taking the viewpoint of geometrically uniform codes extended to discrete spaces. We show a double inclusion relation: binary G-linear codes are propelinear codes, and translation-invariant propelinear codes are G-linear codes. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An extension to the orientational harmonic model is presented as a rotation, translation, and scale invariant representation of geometrical form in biological vision.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The proposed model, called the combinatorial and competitive spatio-temporal memory or CCSTM, provides an elegant solution to the general problem of having to store and recall spatio-temporal patterns in which states or sequences of states can recur in various contexts. For example, fig. 1 shows two state sequences that have a common subsequence, C and D. The CCSTM assumes that any state has a distributed representation as a collection of features. Each feature has an associated competitive module (CM) containing K cells. On any given occurrence of a particular feature, A, exactly one of the cells in CMA will be chosen to represent it. It is the particular set of cells active on the previous time step that determines which cells are chosen to represent instances of their associated features on the current time step. If we assume that typically S features are active in any state then any state has K^S different neural representations. This huge space of possible neural representations of any state is what underlies the model's ability to store and recall numerous context-sensitive state sequences. The purpose of this paper is simply to describe this mechanism.