982 resultados para trans-N-p-coumaroiltiramina
Resumo:
Isolou-se do extrato etanólico de galhos de Aristolochia chamissonis espatulenol, sitosterol, sitosterol-beta-D-glicosídeo, colavelool, 13-epi-2-oxo-colavelool, trans-N-p-coumaroiltiramina, alantoína, ácido aristolóquico I e aristolactama AII. As estruturas da aristolactama AII e da piperolactama A são revisadas com base em análises espectrométricas e derivatizações químicas.
Resumo:
New supramolecular organogels based on all-trans-tri(p-phenylenevinylene) (TPV) systems possessing different terminal groups, e.g., oxime, hydrazone, phenylhydrazone, and semicarbazone have been synthesized. The self-assembly properties of the compounds that gelate in specific organic solvents and the aggregation motifs of these molecules in the organogels were investigated using UV−vis, fluorescence, FT-IR, and 1H NMR spectroscopy, electron microscopy, differential scanning calorimetry (DSC), and rheology. The temperature variable UV−vis and fluorescence spectroscopy in different solvents clearly show the aggregation pattern of the self-assemblies promoted by hydrogen bonding, aromatic π-stacking, and van der Waals interactions among the individual TPV units. Gelation could be controlled by variation in the number of hydrogen-bonding donors and acceptors in the terminal functional groups of this class of gelators. Also wherever gelation is observed, the individual fibers in gels change to other types of networks in their aggregates depending on the number of hydrogen-bonding sites in the terminal functions. Comparison of the thermal stability of the gels obtained from DSC data of different gelators demonstrates higher phase transition temperature and enthalpy for the hydrazone-based gelator. Rheological studies indicate that the presence of more hydrogen-bonding donors in the periphery of the gelator molecules makes the gel more viscoelastic solidlike. However, in the presence of more numbers of hydrogen-bonding donor/acceptors at the periphery of TPVs such as with semicarbazone a precipitation as opposed to gelation was observed. Clearly, the choice of the end functional groups and the number of hydrogen-bonding groups in the TPV backbone holds the key and modulates the effective length of the chromophore, resulting in interesting optical properties.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Amination reactions of 2,6-bis(primary amino)cyclotetraphosphazenes yield not only the expected (amino)cyclotetraphosphazenes but also novel trans-annular bridged bicyclic phosphazenes by an intramolecular substitution pathway. In addition, resins are formed in some reactions by an intermolecular condensation. The effect of substituents attached to the phosphazene ring, the attacking nucleophile and solvent on the formation of the trans-annular P-N-P bridge is considered in detail in relation to plausible reaction mechanisms. Analytical separation of bicyclic phosphazenes by high performance liquid chromatography (HPLC) on a reverse phase silica column is demonstrated. Structural features of bicyclic phosphazenes and salient aspects of their NVR spectroscopic data are discussed.
Resumo:
Pristine and long-chain functionalized single-walled carbon nanotubes (SWNTs) were incorporated successfully in supramolecular organogels formed by an all-trans tri(p-phenylenevinylene) bis-aldoxime to give rise to new nanocomposites with interesting mechanical, thermal and electrical properties. Variable-temperature UV-vis and fluorescence spectra reveal both pristine and functionalized SWNTs promote aggregation of the gelator molecules and result in quenching of the UV-vis and fluorescence intensity. Electron microscopy and confocal microscopy show the existence of a densely packed and directionally aligned fibrous network in the resulting nanocomposites. Differential scanning calorimetry (DSC) of the composites shows that incorporation of SWNTs increases the gel formation temperature. The DSC of the xerogels of 1-SWNT composites indicates formation of different thermotropic mesophases which is also evident from polarized optical microscopy. The reinforced aggregation of the gelators on SWNT doping was reflected in the mechanical properties of the composites. Rheology of the composites demonstrates the formation of a rigid and viscoelastic solid-like assembly on SWNT incorporation. The composites from gel-SWNTs were found to be semiconducting in nature and showed enhanced electrical conductivity compared to that of the native organogel. Upon irradiation with a near IR laser at 1064 nm for 5 min it was possible to selectively induce a gel-to-sol phase transition of the nanocomposites, while irradiation for even 30 min of the native organogel under identical conditions did not cause any gel-to-sol conversion.
Resumo:
Carbon nanomaterials (CNMs), such as exfoliated graphene (EG), long-chain functionalized EG, single-walled carbon nanotubes (SWNTs), and fullerene (C-60), have been investigated for their interaction with two structurally different gelators based on all-trans tri-p-phenylenevinylene bis-aldoxime (1) and n-lauroyl-L-alanine (2) both in solution and in supramolecular organogels. Gelation occurs in toluene through hydrogen bonding and van der Waals interactions for 1 and 2 in addition to pp stacking specifically in the case of 1. These nanocomposites provide a thorough understanding in terms of molecular-level interactions of dimensionally different CNMs with structurally different gelators. The presence of densely wrapped CNMs encapsulated fibrous network in the resulting composites is evident from various spectroscopic and microscopic studies, indicating the presence of supramolecular interactions. Concentration- and temperature-dependent UV/Vis and fluorescence spectra show that CNMs promote aggregation of the gelator molecules, leading to hypochromism and quenching of the fluorescence intensity. Thermotropic mesophases of 1 are altered by the inclusion of a small amount of CNMs. The gelCNM composites show increased electrical conductivity compared with that of the native organogel. Rheological studies of the composites demonstrate the formation of rigid and viscoelastic solidlike assembly due to reinforced aggregation of the gelators on CNMs. Synergistic behavior is observed in case of the composite gel of 1, containing a mixture of EG and SWNT, when compared with other mixtures of CNMs in all combinations with EG. This affords new nanocomposites with interesting optical, thermal, electrical, and mechanical properties.
Resumo:
本论文由四章组成,第一、二、三章为实验论文,分别报道了中药羌活、菊花、全缘叶绿绒蒿的化学成分的高效液相色谱(HPLC)和液相色谱-质谱(LC-MS)联用分析以及挥发油的气相色谱-质谱(GC-MS)联用分析。第四章概述了重要藏药材化学成分的研究进展。 第一章首先对28批不同产地的羌活药材进行了HPLC分析,建立了羌活的指纹图谱。结果表明,不同产地羌活的化学成分基本相似,但是各组分在含量上存在较大差异。其次,对羌活的主要化学组分包括紫花前胡苷、紫花前胡素、6'-O-反式阿魏酸紫花前胡苷、茴香酸对羟基苯乙酯、羌活醇和异欧前胡素进行了定量分析。此外,针对同一产地不同采集时间的羌活挥发油进行系统分析,结果表明它们的化学成分基本相似,主要含有a-蒎烯、b-蒎烯、柠檬烯和龙脑乙酸酯等,只是各组分含量有所变化,这说明采集药材时要注意采集时间。 第二章分别报道了不同产地不同品种菊花非挥发性成分的液相色谱-二极管阵列检测-串联质谱(LC-PDA-MSn)分析和挥发性成分的气相色谱-质谱(GC-MS)联用分析比较。首先通过液相色谱-质谱-串联质谱对各色谱峰进行定性分析,通过与标准品对照,以及UV和MSn提供的结构信息,结合文献报道共鉴定了11个化学成分,包括绿原酸和10个黄酮化合物,并比较了不同品种菊花的化学成分相同之处和不同之处。另外,对七种不同品种不同产地的菊花挥发性成分通过GC-MS分析表明其主要挥发性成分为单萜类、倍半萜类化合物,共有成分樟脑、龙脑和龙脑乙酸酯等,各成分在不同挥发油中的含量变化明显。 第三章为藏药全缘叶绿绒蒿不同部位挥发油成分的气相色谱-质谱(GC-MS)联用分析,比较其挥发油化学成分及其含量变化的异同点。研究结果表明,全缘叶绿绒蒿花精油的化学成分明显多于全草部位,且两者主要成分有较大的差别。 第四章综述了青藏高原重要藏药材化学成分的研究进展。分别对藏药的资源特色和110多种常用重要藏药材的化学成分的研究情况以及藏药未来发展思路进行了阐述,以期对相关的研究提供一些信息。 This dissertation consists of four parts. The first part reports studies on the fingerprint of Notopterygium incisum and N. forbesii by HPLC-PDA-MSn, and on the constitutents of essential oil by GC-MS. The second part elaborates the chemical constitutents of Chrysanthemum L. by LC-MS and GC-MS analysis. The third part reports the chemical compositions of the essential oil from the different parts of Meconopsis integrifolia. The fourth part reviews on the progress of the studies on the chemical constitutents in Tibetan medicines. The first chapter is about HPLC analysis of a traditional Chinese herbal medicine Qiang-huo (Notopterygium incisum and N. forbesii ). Firstly, based on analyzing and contrasting the relative retention time and relative paek area in chromatographic fingerprint, the HPLC chromatographic fingerprint of Notopterygium incisum was established, which can used as a scientific basement for the quality evalution of this herb. Secondly, quantitative analysis were performed on the main chemical constitutents of Notopterygium incisum and N. forbesii including nodakenin, nodakenetin, 6’-O-trans-feruloylnodakenin, p-hydroxypenethylanisate, notopterol and isoimperatorin. The results indicated that the contents were variable related to different growth regions. Lastly, the essential oil of Notopterygium incisum collected in different harvest times is analyzed by GC-MS. The second chapter is about HPLC-MS and GC-MS analysis of several species of Chrysanthemum L. Firstly, eleven compounds including chlorogenic acid and ten flavone compounds were identified in the methanol extract of Chrysanthemum morifolium Ramat. from different regions by HPLC-MS analysis. Secondly, the essential oil of seven different species of Chrysanthemum L.were extracted by steam distillation, and its compositions were isolated and identified by GC-MS. The main active constitutents such as camphor, borneol and bornyl acetate were detected, but the relative content varied notably. The third chapter is about GC-MS analysis of the essential oil from different parts of Meconopsis integrifolia. It indicated great difference of the chemical compositions of their oil in the flowers and residual overground part. The last chapter is a review of the research progress of the Tibetan medicines, which includes their features and their main chemical constitutents.
Resumo:
Dojoji Temple ( Dōjōji, 1976) is a short puppet animation directed by Kihachirō Kawamoto. Influenced by Bunraku (Japanese puppet plays), emaki (painted scroll), Noh theatre and Japanese myth, Dojoji Temple tells of a woman’s unrequited love for a young priest. Heartbroken, she then transforms into a sea serpent and goes after the priest for revenge. While Kawamoto’s animation is rich with Japanese aesthetics and tragedy, his animation is peopled by puppets who do not speak. Limited and restrained though the puppets may be, their animated gestures speak volumes of powerful emotions. For our article, we will select several scenes from the animation, and interpret their actions so that we can further understand the mythical world of Dojoji Temple and the essential being of puppetry. Our gesture analysis will take into account cinematographic compositions, sound and bodily attires, among other elements.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Polyphenols, including flavonoids and stilbenes, are an essential part of human diet and constitute one of the most abundant and ubiquitous group of plant secondary metabolites. The level of these compounds is inducible by stress or fungal attack, so attempts are being made to identify likely biotic and abiotic elicitors and to better understand the underlying mechanism. Resveratrol (3,5,4’-trihydroxystilbene), which belongs to the stilbene family, is a naturally occurring polyphenol, found in several fruits, vegetables and beverages including red wine. It is one of the most important plant polyphenols with proved benefic activity on animal health. In the last two decades, the potential protective effects of resveratrol against cardiovascular and neurodegenerative diseases, as well as the chemopreventive properties against cancer, have been largely investigated. The most important source of polyphenols and in particular resveratrol for human diet is grape (Vitis vinifera). Since stilbenes and flavonoids play a very important role in plant defence responses and enviromental interactions, and their effects on human health seem promising, the aim of the research of this Thesis was to study at different levels the activation and the regulation of their biosynthetic pathways after chitosan treatment. Moreover, the polyphenol production in grape cells and the optimisation of cultural conditions bioreactor scale-up, were also investigated. Cell suspensions were obtained from cv. Barbera (Vitis vinifera L.) petioles and were treated with a biotic elicitor, chitosan (50 μg/mL, dissolved in acetic acid) to promote phenylpropanoid metabolism. Chitosan is a D-glucosamine polymer from fungi cell wall and therefore mimes fungal pathogen attack. Liquid cultures have been monitored for 15 days, measuring cell number, cell viability, pH and grams of fresh weight. The endogenous and released amounts of 7 stilbenes (trans and cis isomers of resveratrol, piceid and resveratroloside, and piceatannol), gallic acid, 6 hydroxycinnamic acids (trans-cinnamic, p-coumaric, caffeic, ferulic, sinapic and chlorogenic acids), 5 catechines (catechin, epicatechin, epigallocatechin-gallate (EGCG), epigallocatechin and epicatechin-gallate) and other 5 flavonoids (chalcon, naringenin, kaempferol, quercetin and rutin) in cells and cultural medium, were measured by HPLC-DAD analysis and total anthocyanins were quantified by spectrophotometric analysis. Chitosan was effective in stimulating trans-resveratrol endogenous accumulation with a sharp peak at day 4 (exceeding acetic acid and water controls by 36% and 63%, respectively), while it did not influence the production of the cis-isomer. Compared to both water and acetic acid controls, chitosan decreased the release of both trans- and cis-resveratrol respect to controls. No effect was shown on the accumulation of single resveratrol mono-glucoside isomers, but considering their total amount, normalized for the relative water control, it was possible to evidence an increase in both accumulation and release of those compounds, in chitosan-treated cells, throughout the culture period and particularly during the second week. Many of the analysed flavonoids and hydroxycinnamic acids were not present or detectable in trace amounts. Catechin, epicatechin and epigallocatechin-gallate (EGCG) were detectable both inside the cells and in the culture media, but chitosan did not affect their amounts. On the contrary, total anthocyanins have been stimulated by chitosan and their level, from day 4 to 14, was about 2-fold higher than in both controls, confirming macroscopic observations that treated suspensions showed an intense brown-red color, from day 3 onwards. These elicitation results suggest that chitosan selectively up-regulates specific biosynthetic pathways, without modifying the general accumulation pattern of other flavonoids. Proteins have been extracted from cells at day 4 of culture (corresponding to the production peak of trans-resveratrol) and separated by bidimensional electrophoresis. The 73 proteins that showed a consistently changed amount between untreated, chitosan and acetic acid (chitosan solvent) treated cells, have been identified by mass spectrometry. Chitosan induced an increase in stilbene synthase (STS, the resveratrol biosynthetic enzyme), chalcone-flavanone isomerase (CHI, that switches the pathway from chalcones to flavones and anthocyanins), pathogenesis-related proteins 10 (PRs10, a large family of defence proteins), and a decrease in many proteins belonging to primary metabolisms. A train of six distinct spots of STS encoded by the same gene and increased by chitosan, was detected on the 2-D gels, and related to the different phosphorylation degree of STS spots. Northern blot analyses have been performed on RNA extracted from cells treated with chitosan and relative controls, using probes for STS, PAL (phenylalanine ammonia lyase, the first enzyme of the biosynthetic pathway), CHS (chalcone synthase, that shares with STS the same precursors), CHI and PR-10. The up-regulation of PAL, CHS and CHI transcript expression levels correlated with the accumulation of anthocyanins. The strong increase of different molecular weight PR-10 mRNAs, correlated with the 11 PR-10 protein spots identified in proteomic analyses. The sudden decrease in trans-resveratrol endogenous accumulation after day 4 of culture, could be simply explained by the diminished resveratrol biosynthetic activity due to the lower amount of biosynthetic enzymes. This might be indirectly demonstrated by northern blot expression analyses, that showed lower levels of phenylalanine ammonia lyase (PAL) and stilbene synthase (STS) mRNAs starting from day 4. Other possible explanations could be a resveratrol oxidation process and/or the formation of other different mono-, di-glucosides and resveratrol oligomers such as viniferins. Immunolocalisation experiments performed on grape protoplasts and the subsequent analyses by confocal microscope, showed that STS, and therefore the resveratrol synthetic site, is mostly associated to intracellular membranes close to the cytosolic side of plasma membrane and in a smaller amount is localized in the cytosol. STS seemed not to be present inside vacuole and nucleus. There were no differences in the STS intracellular localisation between the different treatments. Since it was shown that stilbenes are largely released in the culture medium and that STS is a soluble protein, a possible interaction of STS with a plasma membrane transporter responsible for the extrusion of stilbenes in the culture medium, might be hypothesized. Proteomic analyses performed on subcellular fractions identified in the microsomial fraction 5 proteins taking part in channel complexes or associated with channels, that significantly changed their amount after chitosan treatment. In soluble and membrane fractions respectively 3 and 4 STS and 6 and 3 PR-10 have been identified. Proteomic results obtained from subcellular fractions substantially confirmed previous result obtained from total cell protein extracts and added more information about protein localisation and co-localisation. The interesting results obtained on Barbera cell cultures with the aim to increase polyphenol (especially stilbenes) production, have encouraged scale up tests in 1 litre bioreactors. The first trial fermentation was performed in parallel with a normal time-course in 20 mL flasks, showing that the scale-up (bigger volume and different conditions) process influenced in a very relevant way stilbenes production. In order to optimise culture parameters such as medium sucrose amount, fermentation length and inoculum cell concentration, few other fermentations were performed. Chitosan treatments were also performed. The modification of each parameter brought relevant variations in stilbenes and catechins levels, so that the production of a certain compound (or class of compounds) could be hypothetically promoted by modulating one or more culture parameters. For example the catechin yield could be improved by increasing sucrose content and the time of fermentation. The best results in stilbene yield were obtained in a 800 mL fermentation inoculated with 10.8 grams of cells and supplemented with chitosan. The culture was fed with MS medium added with 30 g/L sucrose, 25 μg/mL rifampicin and 50 μg/mL of chitosan, and was maintained at 24°C, stirred by marine impeller at 100 rpm and supplied of air at 0.16 L/min rate. Resveratroloside was the stilbene present in the larger amount, 3-5 times more than resveratrol. Because resveratrol glucosides are similarly active and more stable than free resveratrol, their production using a bioreactor could be a great advantage in an hypothetical industrial process. In my bioreactor tests, stilbenes were mainly released in the culture medium (60-80% of the total) and this fact could be another advantage for industrial applications, because it allows recovering the products directly from the culture medium without stopping the fermentation and/or killing the cells. In my best cultural conditions, it was possible to obtain 3.95 mg/L of stilbenes at day 4 (maximum resveratrol accumulation) and 5.13 mg/L at day 14 (maximum resveratroloside production). In conclusion, chitosan effect in inducing Vitis vinifera defense mechanisms can be related to its ability to increase the intracellular content of a large spectrum of antioxidants, and in particular of resveratrol, its derivates and anthocyanins. Its effect can be observed at transcriptional, proteomic (variation of soluble and membrane protein amounts) and metabolic (polyphenols production) level. The chitosan ability to elicit specific plant matabolisms can be useful to produce large quantities of antioxidant compounds from cell culture in bioreactor.
Resumo:
Inclusions of sp-hybridised, trans-polyacetylene [trans-(CH)x] and poly(p-phenylene vinylene) (PPV) chains are revealed using resonant Raman scattering (RRS) investigation of amorphous hydrogenated carbon (a-C:H) films in the near IR – UV range. The RRS spectra of trans-(CH)x core Ag modes and the PPV CC-H phenylene mode are found to transform and disperse as the laser excitation energy ћωL is increased from near IR through visible to UV, whereas sp-bonded inclusions only become evident in UV. This is attributed to ћωL probing of trans-(CH)x chain inhomogeneity and the distribution of chains with varying conjugation length; for PPV to the resonant probing of phelynene ring disorder; and for sp segments, to ћωL probing of a local band gap of end-terminated polyynes. The IR spectra analysis confirmed the presence of sp, trans-(CH)x and PPV inclusions. The obtained RRS results for a-C:H denote differentiation between the core Ag trans-(CH)x modes and the PPV phenylene mode. Furthermore, it was found that at various laser excitation energies the changes in Raman spectra features for trans-(CH)x segments included in an amorphous carbon matrix are the same as in bulk trans-polyacetylene. The latter finding can be used to facilitate identification of trans-(CH)x in the spectra of complex carbonaceous materials.
Resumo:
A series of new dicationic dihydrogen complexes of ruthenium of the type cis-[(dppm)(2)Ru(eta(2)-H-2)(L)][BF4](2) (dppm = Ph2PCH2PPh2; L = P(OMe)(3), P(OEt)(3), PF((OPr)-Pr-i)(2)) have been prepared by protonating the precursor hydride complexes cis-[(dppm)(2)Ru(H)(L)][BF4] (L = P(OMe)(3), P(OEt)(3), P((OPr)-Pr-i)(3)) using HBF4.Et2O. The cis-[(dppm)(2)Ru(H)(L)][BF4] complexes were obtained from the trans hydrides via an isomerization reaction that is acid-accelerated. This isomerization reaction gives mixtures of cis and trans hydride complexes, the ratios of which depend on the cone angles of the phosphite ligands: the greater the cone angle, the greater is the amount of the cis isomer. The eta(2)-H-2 ligand in the dihydrogen complexes is labile, and the loss of H-2 was found to be reversible. The protonation reactions of the starting hydrides with trans PMe3 or PMe2Ph yield mixtures of the cis and the trans hydride complexes; further addition of the acid, however, give trans-[(dPPM)(2)Ru(BF4)Cl]. The roles of the bite angles of the dppm ligand as well as the steric and the electronic properties of the monodentate phosphorus ligands in this series of complexes are discussed. X-ray crystal structures of trans-[(dppm)(2)Ru(H)(P(OMe)(3))][BF4], cis-[(dppm)(2)Ru-(H)(P(OMe)(3))][BF4], and cis-[(dppm)(2)Ru(H)(P((OPr)-Pr-i)(3))][BF4] complexes have been determined.
Resumo:
trans-[Ru(NH3)4P(OEt)3H2O] 2+, trans-[Ru(NH3)4(P(OEt)3)]2+, and trans-[Ru(NH3)4P(OEt)3CO]2+ were photolyzed with light of 313 nm on the lowest energy ligand field excited state. Photoaquation of the thermally substitution inert ammonia is observed for all three complexes with φ ≅ 0.30 mol/einstein. trans-[Ru(NH3)4(P(OEt)3)2] 2+ undergoes P(OEt)3 photoaquation with φ ≅ 0.12 mol/einstein, while trans-[Ru(NH3)4P(OEt)3CO]2+ displays CO photoaquation with φ = 0.07 mol/einstein. The results suggest that the electronic configuration of the lowest energy excited state of these complexes have contributions from E and A2 states. Furthermore, in trans-[Ru(NH3)4P(OEt)3CO]2+ the photoaquation of CO is explained by depopulation of a bonding dπ orbital and population of a σ* orbital. © 1992 American Chemical Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)