998 resultados para tower-type bioreactor
Resumo:
Immobilized cell utilization in tower-type bioreactor is one of the main alternatives being studied to improve the industrial bioprocess. Other alternatives for the production of beta -lactam antibiotics, such as a cephalosporin C fed-batch p recess in an aerated stirred-tank bioreactor with free cells of Cepha-losporium acremonium or a tower-type bioreactor with immobilized cells of this fungus, have proven to be more efficient than the batch profess. In the fed-batch process, it is possible to minimize the catabolite repression exerted by the rapidly utilization of carbon sources (such as glucose) in the synthesis of antibiotics by utilizing a suitable flow rate of supplementary medium. In this study, several runs for cephalosporin C production, each lasting 200 h, were conducted in a fed-batch tower-type bioreactor using different hydrolyzed sucrose concentrations, For this study's model, modifications were introduced to take into account the influence of supplementary medium flow rate. The balance equations considered the effect of oxygen limitation inside the bioparticles. In the Monod-type rate equations, eel concentrations, substrate concentrations, and dissolved oxygen were included as reactants affecting the bioreaction rate. The set of differential equations was solved by the numerical method, and the values of the parameters were estimated by the classic nonlinear regression method following Marquardt's procedure with a 95% confidence interval. The simulation results showed that the proposed model fit well with the experimental data,and based on the experimental data and the mathematical model an optimal mass flow rate to maximize the bioprocess productivity could be proposed.
Resumo:
A tower is proposed in the highest part of the city of Madrid, in La Moraleja, so high, so very high that one might just see the sea on a clear day. = Se propone una torre en lo más alto de Madrid, en la Moraleja, tan alta tan alta que desde ella podría verse el mar en los días claros.
Resumo:
Ferrous iron bio-oxidation by Acidithiobacillus ferrooxidans immobilized on polyurethane foam was investigated. Cells were immobilized on foams by placing them in a growth environment and fully bacterially activated polyurethane foams (BAPUFs) were prepared by serial subculturing in batches with partially bacterially activated foam (pBAPUFs). The dependence of foam density on cell immobilization process, the effect of pH and BAPUF loading on ferrous oxidation were studied to choose operating parameters for continuous operations. With an objective to have high cell densities both in foam and the liquid phase, pretreated foams of density 50 kg/m3 as cell support and ferrous oxidation at pH 1.5 to moderate the ferric precipitation were preferred. A novel basket-type bioreactor for continuous ferrous iron oxidation, which features a multiple effect of stirred tank in combination with recirculation, was designed and operated. The results were compared with that of a free cell and a sheet-type foam immobilized reactors. A fivefold increase in ferric iron productivity at 33.02 g/h/L of free volume in foam was achieved using basket-type bioreactor when compared to a free cell continuous system. A mathematical model for ferrous iron oxidation by Acidithiobacillus ferrooxidans cells immobilized on polyurethane foam was developed with cell growth in foam accounted by an effectiveness factor. The basic parameters of simulation were estimated using the experimental data on free cell growth as well as from cell attachment to foam under nongrowing conditions. The model predicted the phase of both oxidation of ferrous in shake flasks by pBAPUFs as well as by fully activated BAPUFs for different cell loadings in foam. Model for stirred tank basket bioreactor predicted within 5% both transient and steady state of the experiments closely for the simulated dilution rates. Bio-oxidation at high Fe2+ concentrations were simulated with experiments when substrate and product inhibition coefficients were factored into cell growth kinetics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The symposium whose papers are abstracted here was the fourth in a series held alternately at Kansas State University and the University of Nebraska–Lincoln. Requests for further information on projects conducted at Kansas State should be directed to Professor L.E. Erickson and on those at Nebraska to the editor. ContentsJohn C. Heydweiller, "Estimating Sedimentation of Organisms in a Tower-Type Activated Sludge System" Raymond C. Eliason, "Properties and Utilization of Small Particulates in Cattle Manure" Kenneth H. Hsu, "Oxygen Transfer in Tower Systems with Motionless Mixers" Raymond C. Eliason, "Hydrolysis of Sucrose by 20 Invertase Immobilized on Hollow Fibers" Robert Shipman, "Single Cell Protein from Photosynthetic 26 Bacteria" Peter J. Reilly, "Stability of Commensalistic Systems"
Resumo:
A fixação biológica de dióxido de carbono por microalgas é considerada a melhor forma de fixar CO2. Dentre os microrganismos utilizados destaca-se Spirulina platensis devido às suas altas taxas de fixação de CO2 e variedade de aplicações da biomassa gerada. A aplicação de modelos e simulações pode auxiliar na previsão de custos e na escolha das condições ideais de cultivo. Este trabalho teve como objetivo etsabelecer um modelo cinético no qual a iluminância é o fator limitante para o crescimento da microalga Spirulina platensis. A fim de validar o modelo proposto foi utilizada a microalga S. platensis, cultivada em meio Zarrouk modificado (NaHCO3 1,0 g.L-1 ), em biorreator aberto tipo raceway de 200L, mantido a 30°C, sob iluminação natural. A concentração celular variou de 0,19 a 0,34 g.L-1 e a velocidade específica de crescimento celular obtida a partir da regressão exponencial das curvas de crescimento de cada período iluminado variou de 0,55 a 0,59 d-1 . O modelo proposto gerou dados estimados satisfatórios (r2 =0,97). De acordo com os dados obtidos 16,2% da biomassa é consumida durante o período não iluminado.
Resumo:
The feasibility of using Streptomyces clavuligerus ATCC 27064 bioparticles supported on alginate gel containing alumina to produce clavulanic acid (CA) was investigated. To this end, effectiveness factors for spherical bioparticles, relating respiration rates of immobilised and free cells, were experimentally determined for various dissolved oxygen (DO) levels and bioparticle radii. Monod kinetics was assumed as representative of the oxygen consuming reaction, while internal oxygen diffusion was considered the limiting step. A comparison was made of the results from a tower bioreactor operating under batch, repeated-batch and continuous conditions with immobilised bioparticles. The theoretical curve of the effectiveness factor for the zero-order reaction model, considering an inert nucleus - the dead core model - was very well fitted to the experimental data. The results of the bioprocess indicated that the batch operation was the most efficient and productive, requiring a do concentration in the reactor above 60% of the saturation value. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The industrial production of antibiotics with filamentous fungi is usually carried out in conventional aerated and agitated tank fermentors. Highly viscous non-Newtonian broths are produced and a compromise must be found between convenient shear stress and adequate oxygen transfer. In this work, cephalosporin C production by bioparticles of immobilized cells of Cephalosporium acremonium ATCC 48272 was studied in a repeated batch tower bioreactor as an alternative to the conventional process. Also, gas-liquid oxygen transfer volumetric coefficients, k(L)a, were determined at various air flow-rates and alumina contents in the bioparticle. The bioparticles were composed of calcium alginate (2.0% w/w), alumina (<44 micra), cells, and water. A model describing the cell growth, cephalosporin C production, oxygen, glucose, and sucrose consumption was proposed. To describe the radial variation of oxygen concentration within the pellet, the reaction-diffusion model forecasting a dead core bioparticle was adopted. The k(L)a measurements with gel beads prepared with 0.0, 1.0, 1.5, and 2.0% alumina showed that a higher k(L)a value is attained with 1.5 and 2.0%. An expression relating this coefficient to particle density, liquid density, and air velocity was obtained and further utilized in the simulation of the proposed model. Batch, followed by repeated batch experiments, were accomplished by draining the spent medium, washing with saline solution, and pouring fresh medium into the bioreactor. Results showed that glucose is consumed very quickly, within 24 h, followed by sucrose consumption and cephalosporin C production. Higher productivities were attained during the second batch, as cell concentration was already high, resulting in rapid glucose consumption and an early derepression of cephalosporin C synthesizing enzymes. The model incorporated this improvement predicting higher cephalosporin C productivity. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Bioreactors are defined as devices in which biological and/or biochemical processes develop under closely monitored and tightly controlled environmental and operating conditions (e.g. pH, temperature, mechanical conditions, nutrient supply and waste removal). In functional tissue engineering of musculoskeletal tissues, a bioreactor capable of controlling dynamic loading plays a determinant role. It has been shown that mechanical stretching promotes the expression of type I and III collagens, fibronectin, tenascin-C in cultured ligament fibroblasts (J.C.-H. Goh et al., Tissue Eng. 9 (2003), S31) and that human bone marrow mesenchymal stem cells (hBMMSC) – even in the absence of biochemical regulators – could be induced to differentiate into ligament-like fibroblast by the application of physiologically relevant cyclic strains (G. Vunjak-Novakovic et al., Ann. Rev. Biomed. Eng. 6 (2004), 131; H.A. Awad et al., Tissue Eng. 5 (1999), 267; R.G. Young et al., J. Orthop. Res. 16 (1998), 406). Different bioreactors are commercially available but they are too generic to be used for a given tissue, each tissue showing specific mechanical loading properties. In the case of ligament tissue engineering, the design of a bioreactor is still an open question. Our group proposes a bioreactor allowing cyclic traction–torsion on a scaffold seeded with stem cells.
Resumo:
Supplementation of mesenchymal stem cells (MSCs) during hematopoietic stem cell transplantation (HSCT) alleviates complications such as graft-versus-host disease, leading to a speedy recovery of hematopoiesis. To meet such clinical demand, a fast MSCs expansion method is required. In the present study, we examined the feasibility of expanding MSCs from the isolated bone marrow mononuclear cells using a rotary bioreactor system. The cells were cultured in a rotary bioreactor with Myelocult� medium containing a combination of supplementary factors, including stem cell factor (SCF), interleukin 3 and 6 (IL-3, IL-6). After 8 days of culture, total cell numbers, Stro-1+CD44+CD34- MSCs and CD34+CD44+Stro-1- HSCs were increased 9, 29, and 8 folds respectively. Colony forming efficiency-fibroblast per day (CFE-F/day) of the bioreactor-treated cells was 1.44-fold higher than that of the cells without bioreactor treatment. The bioreactor-expanded MSCs showed expression of primitive MSCs markers endoglin (SH2) and vimentin, whereas markers associated with lineage differentiation including osteocalcin (osteogenesis), Type II collagen (chondrogenesis) and C/EBPα (adipogenesis) were not detected. Upon induction, the bioreactor-expanded MSCs were able to differentiate into osteoblasts, chondrocytes and adipocytes. Taken together, we conclude that the rotary bioreactor with the modified Myelocult� medium reported in this study may be used to rapidly expand MSCs.
Resumo:
http://digitalcommons.colby.edu/atlasofmaine2009/1023/thumbnail.jpg
Resumo:
The biooxidation of ferrous ion into ferric ion by Acidithiobacillus ferrooxidans can be potentially used for the removal of H2S from industrial gases. In this work, Fe3+ ions were obtained through the oxidation of Fe2+ using the LR strain of At. ferrooxidans immobilized in PVC stands in a pilot-scale bioreactor, while H2S was removed in an absorption tower equipped with Rasching rings. At. ferrooxidans LR strain cells were immobilized by inoculating the bacterium in a Fe2+-mineral medium and percolating it through the support. After complete Fe2+ oxidation, which took around 90 h, the reactor was washed several times with sulfuric acid (pH 1.7) before a new cycle was started. Four additional cycles using fresh Fe2+ mineral medium were then run. During these colonization cycles, the time required for complete iron oxidation decreased, dropping to about 60 h in the last cycle. The batch experiments in the H2S gas removal trials resulted in a gas removal rate of about 98-99% under the operational conditions employed. In the continuous experiments with the bioreactor coupled to the gas absorption column, a gas removal efficiency of almost 100% was reached after 500 min. Precipitate containing mainly sulfur formed during the experimental trial was identified by EDX. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)