61 resultados para toric
Resumo:
There have been significant improvements in toric soft contact lens design over the past decade. Data from our international contact lens prescribing survey were mined to assess recent trends in toric soft contact lens fitting. This survey was conducted by sending up to 1000 survey forms to contact lens fitters in Australia, Canada, Japan, the Netherlands, Norway, the UK and the USA each year between 2000 and 2009. Practitioners were asked to record data relating to the first 10 contact lens fits or refits performed after receiving the forms and to return them to us for analysis. The data revealed a gradual increase in the extent of toric soft lens fitting this century. Excluding Japan – which had a consistently low rate of soft toric lens fitting over the survey period – soft toric lenses now represent over 35% of all soft lenses prescribed; it can be assumed that, on average (and again excluding Japan), all cases of astigmatism 0.75 D or less remains uncorrected among contact lens wearers. Toric lenses are fitted more to those who are older, full-time wearers and reusable lens wearers, and less to those wearing silicone hydrogel and extended wear lenses.
Resumo:
Objectives To characterize toric contact lens prescribing worldwide. Methods Up to 1,000 survey forms were sent to contact lens fitters in up to 39 countries between January and March every year for 5 consecutive years (2007–2011). Practitioners were asked to record data relating to the first 10 contact lens fits or refits performed after receiving the survey form. Only data for toric and spherical soft lens fits were analyzed. Survey data collected since 1996 were also analyzed for 7 nations to assess toric lens fitting trends since that time. Results Data were collected in relation to 21,150 toric fits (25%) and 62,150 spherical fits (75%). Toric prescribing ranged from 6% of lenses in Russia to 48% in Portugal. Compared with spherical fittings, toric fittings can be characterized as follows: older age (29.8 ± 11.4 years vs. 27.6 ± 10.8 years for spherical lenses); men are overrepresented (38% vs. 34%); greater proportion of new fits (39% vs. 32%); use of silicone hydrogel lenses (49% vs. 39%); and lower proportion of daily disposable lenses (14% vs. 28%). There has been a continuous increase in toric lens prescribing between 1996 and 2011. The proportion of toric lens fits was positively related to the gross domestic product at purchasing power parity per capita for year 2011 (r2 = 0.21; P=0.004). Conclusions At the present time, in the majority of countries surveyed, toric soft contact lens prescribing falls short of that required to correct clinically significant astigmatism (≥0.75 diopters) in all lens wearers.
Resumo:
Purpose The aim of this study is to assess the refractive and visual outcomes following cataract surgery and implantation of the AcrySof IQ Toric SN6AT2 intraolcular lens (IOL) (Alcon Laboratories, Inc) in patients with low corneal astigmatism. Materials and Methods A retrospective, consecutive, single surgeon series of ninety-eight eyes of 88 patients following cataract surgery and implantation of the AcrySof IQ Toric SN6AT2 IOL in eyes with low preoperative corneal astigmatism. Postoperative measurements were obtained at one month post surgery. Main outcome measures were monocular distance visual acuity and residual refractive astigmatism. Results The mean preoperative corneal astigmatic power vector (APV) was 0.38 ± 0.09 D. Following surgery and implantation of the toric IOL, mean postoperative refractive APV was 0.13 ± 0.10 D. Mean postoperative distance uncorrected visual acuity (UCVA) was 0.08 ± 0.09 logMAR. Postoperative spherical equivalent refraction (SER) resulted in a mean of - 0.23 ± 0.22 D, with 96% of eyes falling within 0.50 D of the target SER. Conclusions The AcrySof IQ Toric SN6AT2 IOL is a safe and effective option for eyes undergoing cataract surgery with low amounts of preoperative corneal astigmatism.
Resumo:
We define a category of quasi-coherent sheaves of topological spaces on projective toric varieties and prove a splitting result for its algebraic K-theory, generalising earlier results for projective spaces. The splitting is expressed in terms of the number of interior lattice points of dilations of a polytope associated to the variety. The proof uses combinatorial and geometrical results on polytopal complexes. The same methods also give an elementary explicit calculation of the cohomology groups of a projective toric variety over any commutative ring.
Resumo:
Let X be a quasi-compact scheme, equipped with an open covering by affine schemes U s = Spec A s . A quasi-coherent sheaf on X gives rise, by taking sections over the U s , to a diagram of modules over the coordinate rings A s , indexed by the intersection poset S of the covering. If X is a regular toric scheme over an arbitrary commutative ring, we prove that the unbounded derived category of quasi-coherent sheaves on X can be obtained from a category of Sop-diagrams of chain complexes of modules by inverting maps which induce homology isomorphisms on hyper-derived inverse limits. Moreover, we show that there is a finite set of weak generators, one for each cone in the fan S. The approach taken uses the machinery of Bousfield–Hirschhorn colocalisation of model categories. The first step is to characterise colocal objects; these turn out to be homotopy sheaves in the sense that chain complexes over different open sets U s agree on intersections up to quasi-isomorphism. In a second step it is shown that the homotopy category of homotopy sheaves is equivalent to the derived category of X.
Resumo:
Suppose X is a projective toric scheme defined over a ring R and equipped with an ample line bundle L . We prove that its K-theory has a direct summand of the form K(R)(k+1) where k = 0 is minimal such that L?(-k-1) is not acyclic. Using a combinatorial description of quasi-coherent sheaves we interpret and prove this result for a ring R which is either commutative, or else left noetherian.
Resumo:
Accurate alignment of a toric intraocular lens (IOL) is a requisite to achieving the intended reduction in astigmatism at the time of cataract surgery. However, it requires a reasonably clear view of the limbal vascular anatomy, which is sometimes altered by chemosis from a subconjunctival anesthetic injection or a hemorrhage. We describe a technique that can quickly restore vascular anatomy and facilitate toric IOL alignment.
Resumo:
Let O-2n be a symplectic toric orbifold with a fixed T-n-action and with a tonic Kahler metric g. In [10] we explored whether, when O is a manifold, the equivariant spectrum of the Laplace Delta(g) operator on C-infinity(O) determines O up to symplectomorphism. In the setting of tonic orbifolds we shmilicantly improve upon our previous results and show that a generic tone orbifold is determined by its equivariant spectrum, up to two possibilities. This involves developing the asymptotic expansion of the heat trace on an orbifold in the presence of an isometry. We also show that the equivariant spectrum determines whether the toric Kahler metric has constant scalar curvature. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
We regularize compact and non-compact Abelian Chern–Simons–Maxwell theories on a spatial lattice using the Hamiltonian formulation. We consider a doubled theory with gauge fields living on a lattice and its dual lattice. The Hilbert space of the theory is a product of local Hilbert spaces, each associated with a link and the corresponding dual link. The two electric field operators associated with the link-pair do not commute. In the non-compact case with gauge group R, each local Hilbert space is analogous to the one of a charged “particle” moving in the link-pair group space R2 in a constant “magnetic” background field. In the compact case, the link-pair group space is a torus U(1)2 threaded by k units of quantized “magnetic” flux, with k being the level of the Chern–Simons theory. The holonomies of the torus U(1)2 give rise to two self-adjoint extension parameters, which form two non-dynamical background lattice gauge fields that explicitly break the manifest gauge symmetry from U(1) to Z(k). The local Hilbert space of a link-pair then decomposes into representations of a magnetic translation group. In the pure Chern–Simons limit of a large “photon” mass, this results in a Z(k)-symmetric variant of Kitaev’s toric code, self-adjointly extended by the two non-dynamical background lattice gauge fields. Electric charges on the original lattice and on the dual lattice obey mutually anyonic statistics with the statistics angle . Non-Abelian U(k) Berry gauge fields that arise from the self-adjoint extension parameters may be interesting in the context of quantum information processing.
Resumo:
In this paper we generalize the algebraic density property to not necessarily smooth affine varieties relative to some closed subvariety containing the singular locus. This property implies the remarkable approximation results for holomorphic automorphisms of the Andersén–Lempert theory. We show that an affine toric variety X satisfies this algebraic density property relative to a closed T-invariant subvariety Y if and only if X∖Y≠TX∖Y≠T. For toric surfaces we are able to classify those which possess a strong version of the algebraic density property (relative to the singular locus). The main ingredient in this classification is our proof of an equivariant version of Brunella's famous classification of complete algebraic vector fields in the affine plane.
Resumo:
Background To evaluate the 3-year clinical outcomes after toric implantable collamer lens (ICL) implantation for the management of moderate to high myopic astigmatism. Methods Thirty-four eyes of 20 patients who underwent toric ICL implantation were reviewed. All eyes completed 3-year follow-up. Uncorrected (UDVA) and corrected (CDVA) distance LogMAR visual acuities, refraction, endothelial cell density (ECD), and surgical complications were evaluated. Vectorial analysis of astigmatic correction was also done. Results A significant improvement in UDVA, CDVA, manifest spherical and cylindrical refraction was observed at 1 week and remained stable after 3 years. Twenty-six eyes (76.5 %) gained lines of CDVA, and two eyes (5.9 %) showed a loss of 1 line of CDVA. The spherical equivalent (SE) was within ±0.50 D of emmetropia in 18 eyes (52.9 %) and within ±1.00 D in 28 eyes (82.4 %). Differences between target-induced astigmatism (TIA) and surgically-induced astigmatism (SIA) were statistically significant (p < 0.01), and a trend to undercorrection of the refractive astigmatism was present after 3 years. The magnitude of flattening effect (FE) was found to be significantly lower than the magnitude of TIA (p < 0.01). The magnitude of the torque vector was always positive, with a value below 0.50 D in all cases. No vision-threatening complications were observed during the follow-up. Conclusion Toric ICL implantation is an effective and safe surgical option that provides a relatively predictable and stable refractive correction of myopic astigmatism. Further improvements are needed to minimize the degree of undercorrection.
Resumo:
Background To evaluate the intraocular lens (IOL) position by analyzing the postoperative axis of internal astigmatism as well as the higher-order aberration (HOA) profile after cataract surgery following the implantation of a diffractive multifocal toric IOL. Methods Prospective study including 51 eyes with corneal astigmatism of 1.25D or higher of 29 patients with ages ranging between 20 and 61 years old. All cases underwent uneventful cataract surgery with implantation of the AT LISA 909 M toric IOL (Zeiss). Visual, refractive and corneal topograpy changes were evaluated during a 12-month follow-up. In addition, the axis of internal astigmatism as well as ocular, corneal, and internal HOA (5-mm pupil) were evaluated postoperatively by means of an integrated aberrometer (OPD Scan II, Nidek). Results A significant improvement in uncorrected distance and near visual acuities (p < 0.01) was found, which was consistent with a significant correction of manifest astigmatism (p < 0.01). No significant changes were observed in corneal astigmatism (p = 0.32). With regard to IOL alignment, the difference between the axes of postoperative internal and preoperative corneal astigmatisms was close to perpendicularity (12 months, 87.16° ± 7.14), without significant changes during the first 6 months (p ≥ 0.46). Small but significant changes were detected afterwards (p = 0.01). Additionally, this angular difference correlated with the postoperative magnitude of manifest cylinder (r = 0.31, p = 0.03). Minimal contribution of intraocular optics to the global magnitude of HOA was observed. Conclusions The diffractive multifocal toric IOL evaluated is able to provide a predictable astigmatic correction with apparent excellent levels of optical quality during the first year after implantation.
Resumo:
PURPOSE: To assess the repeatability of an objective image analysis technique to determine intraocular lens (IOL) rotation and centration. SETTING: Six ophthalmology clinics across Europe. METHODS: One-hundred seven patients implanted with Akreos AO aspheric IOLs with orientation marks were imaged. Image quality was rated by a masked observer. The axis of rotation was determined from a line bisecting the IOL orientation marks. This was normalized for rotation of the eye between visits using the axis bisecting 2 consistent conjunctival vessels or iris features. The center of ovals overlaid to circumscribe the IOL optic edge and the pupil or limbus were compared to determine IOL centration. Intrasession repeatability was assessed in 40 eyes and the variability of repeated analysis examined. RESULTS: Intrasession rotational stability of the IOL was ±0.79 degrees (SD) and centration was ±0.10 mm horizontally and ±0.10 mm vertically. Repeated analysis variability of the same image was ±0.70 degrees for rotation and ±0.20 mm horizontally and ±0.31 mm vertically for centration. Eye rotation (absolute) between visits was 2.23 ± 1.84 degrees (10%>5 degrees rotation) using one set of consistent conjunctival vessels or iris features and 2.03 ± 1.66 degrees (7%>5 degrees rotation) using the average of 2 sets (P =.13). Poorer image quality resulted in larger apparent absolute IOL rotation (r =-0.45,P<.001). CONCLUSIONS: Objective analysis of digital retroillumination images allows sensitive assessment of IOL rotation and centration stability. Eye rotation between images can lead to significant errors if not taken into account. Image quality is important to analysis accuracy.
Resumo:
Purpose: To assess the stability of the Akreos AO intraocular lens (IOL) platform with a simulated toric design using objective image analysis. Setting: Six hospital eye clinics across Europe. Methods: After implantation in 1 eye of patients, IOLs with orientation marks were imaged at 1 to 2 days, 7 to 14 days, 30 to 60 days, and 120 to 180 days. The axis of rotation and IOL centration were objectively assessed using validated image analysis. Results: The study enrolled 107 patients with a mean age of 69.9 years ± 7.7 (SD). The image quality was sufficient for IOL rotation analysis in 91% of eyes. The mean rotation between the first day postoperatively and 120 to 180 days was 1.93 ± 2.33 degrees, with 96% of IOLs rotating fewer than 5 degrees and 99% rotating fewer than 10 degrees. There was no significant rotation between visits and no clear bias in the direction of rotation. In 71% of eyes, the dilation and image quality was sufficient for image analysis of centration. The mean change in centration between 1 day and 120 to 180 days was 0.21 ± 0.11 mm, with all IOLs decentering less than 0.5 mm. There was no significant decentration between visits and no clear bias in the direction of the decentration. Conclusion: Objective analysis of digital retroillumination images taken at different postoperative periods shows the aspheric IOL platform was stable in the eye and is therefore suitable for the application of a toric surface to correct corneal astigmatism.