The algebraic density property for affine toric varieties
Data(s) |
2015
31/12/1969
|
---|---|
Resumo |
In this paper we generalize the algebraic density property to not necessarily smooth affine varieties relative to some closed subvariety containing the singular locus. This property implies the remarkable approximation results for holomorphic automorphisms of the Andersén–Lempert theory. We show that an affine toric variety X satisfies this algebraic density property relative to a closed T-invariant subvariety Y if and only if X∖Y≠TX∖Y≠T. For toric surfaces we are able to classify those which possess a strong version of the algebraic density property (relative to the singular locus). The main ingredient in this classification is our proof of an equivariant version of Brunella's famous classification of complete algebraic vector fields in the affine plane. |
Formato |
application/pdf application/pdf |
Identificador |
http://boris.unibe.ch/82550/1/1402.2227.pdf http://boris.unibe.ch/82550/8/1-s2.0-S0022404914003272-main.pdf Kutzschebauch, Frank; Leuenberger, Matthias; Liendo Rojas, Alvaro Patricio (2015). The algebraic density property for affine toric varieties. Journal of pure and applied algebra, 219(8), pp. 3685-3700. North-Holland 10.1016/j.jpaa.2014.12.017 <http://dx.doi.org/10.1016/j.jpaa.2014.12.017> doi:10.7892/boris.82550 info:doi:10.1016/j.jpaa.2014.12.017 urn:issn:0022-4049 |
Idioma(s) |
eng |
Publicador |
North-Holland |
Relação |
http://boris.unibe.ch/82550/ |
Direitos |
info:eu-repo/semantics/embargoedAccess info:eu-repo/semantics/restrictedAccess |
Fonte |
Kutzschebauch, Frank; Leuenberger, Matthias; Liendo Rojas, Alvaro Patricio (2015). The algebraic density property for affine toric varieties. Journal of pure and applied algebra, 219(8), pp. 3685-3700. North-Holland 10.1016/j.jpaa.2014.12.017 <http://dx.doi.org/10.1016/j.jpaa.2014.12.017> |
Palavras-Chave | #510 Mathematics |
Tipo |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion PeerReviewed |