The algebraic density property for affine toric varieties


Autoria(s): Kutzschebauch, Frank; Leuenberger, Matthias; Liendo Rojas, Alvaro Patricio
Data(s)

2015

31/12/1969

Resumo

In this paper we generalize the algebraic density property to not necessarily smooth affine varieties relative to some closed subvariety containing the singular locus. This property implies the remarkable approximation results for holomorphic automorphisms of the Andersén–Lempert theory. We show that an affine toric variety X satisfies this algebraic density property relative to a closed T-invariant subvariety Y if and only if X∖Y≠TX∖Y≠T. For toric surfaces we are able to classify those which possess a strong version of the algebraic density property (relative to the singular locus). The main ingredient in this classification is our proof of an equivariant version of Brunella's famous classification of complete algebraic vector fields in the affine plane.

Formato

application/pdf

application/pdf

Identificador

http://boris.unibe.ch/82550/1/1402.2227.pdf

http://boris.unibe.ch/82550/8/1-s2.0-S0022404914003272-main.pdf

Kutzschebauch, Frank; Leuenberger, Matthias; Liendo Rojas, Alvaro Patricio (2015). The algebraic density property for affine toric varieties. Journal of pure and applied algebra, 219(8), pp. 3685-3700. North-Holland 10.1016/j.jpaa.2014.12.017 <http://dx.doi.org/10.1016/j.jpaa.2014.12.017>

doi:10.7892/boris.82550

info:doi:10.1016/j.jpaa.2014.12.017

urn:issn:0022-4049

Idioma(s)

eng

Publicador

North-Holland

Relação

http://boris.unibe.ch/82550/

Direitos

info:eu-repo/semantics/embargoedAccess

info:eu-repo/semantics/restrictedAccess

Fonte

Kutzschebauch, Frank; Leuenberger, Matthias; Liendo Rojas, Alvaro Patricio (2015). The algebraic density property for affine toric varieties. Journal of pure and applied algebra, 219(8), pp. 3685-3700. North-Holland 10.1016/j.jpaa.2014.12.017 <http://dx.doi.org/10.1016/j.jpaa.2014.12.017>

Palavras-Chave #510 Mathematics
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion

PeerReviewed