962 resultados para threshold detector
Resumo:
This letter presents signal processing techniques to detect a passive thermal threshold detector based on a chipless time-domain ultrawideband (UWB) radio frequency identification (RFID) tag. The tag is composed by a UWB antenna connected to a transmission line, in turn loaded with a biomorphic thermal switch. The working principle consists of detecting the impedance change of the thermal switch. This change occurs when the temperature exceeds a threshold. A UWB radar is used as the reader. The difference between the actual time sample and a reference signal obtained from the averaging of previous samples is used to determine the switch transition and to mitigate the interferences derived from clutter reflections. A gain compensation function is applied to equalize the attenuation due to propagation loss. An improved method based on the continuous wavelet transform with Morlet wavelet is used to overcome detection problems associated to a low signal-to-noise ratio at the receiver. The average delay profile is used to detect the tag delay. Experimental measurements up to 5 m are obtained.
Sistema de adquisición de datos para una aplicación de detección del ruido de reversa en tiempo real
Resumo:
Entre todas las fuentes de ruido, la activación de la propulsión en reversa de un avión después de aterrizar es conocida por las autoridades del aeropuerto como una causa importante de impacto acústico, molestias y quejas en las proximidades vecinas de los aeropuertos. Por ello, muchos de los aeropuertos de todo el mundo han establecido restricciones en el uso de la reversa, especialmente en las horas de la noche. Una forma de reducir el impacto acústico en las actividades aeroportuarias es implementar herramientas eficaces para la detección de ruido en reversa en los aeropuertos. Para este proyecto de fin de carrera, aplicando la metodología TREND (Thrust Reverser Noise Detection), se pretende desarrollar un sistema software capaz de determinar que una aeronave que aterrice en la pista active el frenado en reversa en tiempo real. Para el diseño de la aplicación se plantea un modelo software, que se compone de dos módulos: El módulo de adquisición de señales acústicas, simula un sistema de captación por señales de audio. Éste módulo obtiene muestra de señales estéreo de ficheros de audio de formato “.WAV” o del sistema de captación, para acondicionar las muestras de audio y enviarlas al siguiente módulo. El sistema de captación (array de micrófonos), se encuentra situado en una localización cercana a la pista de aterrizaje. El módulo de procesado busca los eventos de detección aplicando la metodología TREND con las muestras acústicas que recibe del módulo de adquisición. La metodología TREND describe la búsqueda de dos eventos sonoros llamados evento 1 (EV1) y evento 2 (EV2); el primero de ellos, es el evento que se activa cuando una aeronave aterriza discriminando otros eventos sonoros como despegues de aviones y otros sonidos de fondo, mientras que el segundo, se producirá después del evento 1, sólo cuando la aeronave utilice la reversa para frenar. Para determinar la detección del evento 1, es necesario discriminar las señales ajenas al aterrizaje aplicando un filtrado en la señal capturada, después, se aplicará un detector de umbral del nivel de presión sonora y por último, se determina la procedencia de la fuente de sonido con respecto al sistema de captación. En el caso de la detección del evento 2, está basada en la implementación de umbrales en la evolución temporal del nivel de potencia acústica aplicando el modelo de propagación inversa, con ayuda del cálculo de la estimación de la distancia en cada instante de tiempo mientras el avión recorre la pista de aterrizaje. Con cada aterrizaje detectado se realiza una grabación que se archiva en una carpeta específica y todos los datos adquiridos, son registrados por la aplicación software en un fichero de texto. ABSTRACT. Among all noise sources, the activation of reverse thrust to slow the aircraft after landing is considered as an important cause of noise pollution by the airport authorities, as well as complaints and annoyance in the airport´s nearby locations. Therefore, many airports around the globe have restricted the use of reverse thrust, especially during the evening hours. One way to reduce noise impact on airport activities is the implementation of effective tools that deal with reverse noise detection. This Final Project aims to the development of a software system capable of detecting if an aircraft landing on the runway activates reverse thrust on real time, using the TREND (Thrust Reverser Noise Detection) methodology. To design this application, a two modules model is proposed: • The acoustic signals obtainment module, which simulates an audio waves based catchment system. This module obtains stereo signal samples from “.WAV” audio files or the catchment system in order to prepare these audio samples and send them to the next module. The catchment system (a microphone array) is located on a place near the landing runway. • The processing module, which looks for detection events among the acoustic samples received from the other module, using the TREND methodology. The TREND methodology describes the search of two sounds events named event 1 (EV1) and event 2 (EV2). The first is the event activated by a landing plane, discriminating other sound events such as background noises or taking off planes; the second one will occur after event one only when the aircraft uses reverse to slow down. To determine event 1 detection, signals outside the landing must be discriminated using a filter on the catched signal. A pressure level´s threshold detector will be used on the signal afterwards. Finally, the origin of the sound source is determined regarding the catchment system. The detection of event 2 is based on threshold implementations in the temporal evolution of the acoustic power´s level by using the inverse propagation model and calculating the distance estimation at each time step while the plane goes on the landing runway. A recording is made every time a landing is detected, which is stored in a folder. All acquired data are registered by the software application on a text file.
Resumo:
Purpose: Several attempts to determine the transit time of a high dose rate (HDR) brachytherapy unit have been reported in the literature with controversial results. The determination of the source speed is necessary to accurately calculate the transient dose in brachytherapy treatments. In these studies, only the average speed of the source was measured as a parameter for transit dose calculation, which does not account for the realistic movement of the source, and is therefore inaccurate for numerical simulations. The purpose of this work is to report the implementation and technical design of an optical fiber based detector to directly measure the instantaneous speed profile of a (192)Ir source in a Nucletron HDR brachytherapy unit. Methods: To accomplish this task, we have developed a setup that uses the Cerenkov light induced in optical fibers as a detection signal for the radiation source moving inside the HDR catheter. As the (192)Ir source travels between two optical fibers with known distance, the threshold of the induced signals are used to extract the transit time and thus the velocity. The high resolution of the detector enables the measurement of the transit time at short separation distance of the fibers, providing the instantaneous speed. Results: Accurate and high resolution speed profiles of the 192Ir radiation source traveling from the safe to the end of the catheter and between dwell positions are presented. The maximum and minimum velocities of the source were found to be 52.0 +/- 1.0 and 17.3 +/- 1:2 cm/s. The authors demonstrate that the radiation source follows a uniformly accelerated linear motion with acceleration of vertical bar a vertical bar = 113 cm/s(2). In addition, the authors compare the average speed measured using the optical fiber detector to those obtained in the literature, showing deviation up to 265%. Conclusions: To the best of the authors` knowledge, the authors directly measured for the first time the instantaneous speed profile of a radiation source in a HDR brachytherapy unit traveling from the unit safe to the end of the catheter and between interdwell distances. The method is feasible and accurate to implement on quality assurance tests and provides a unique database for efficient computational simulations of the transient dose. (C) 2010 American Association of Physicists in Medicine. [DOI: 10.1118/1.3483780]
Resumo:
Dijet events produced in LHC proton--proton collisions at a center-of-mass energy s√=8 TeV are studied with the ATLAS detector using the full 2012 data set, with an integrated luminosity of 20.3 fb−1. Dijet masses up to about 4.5 TeV are probed. No resonance-like features are observed in the dijet mass spectrum. Limits on the cross section times acceptance are set at the 95% credibility level for various hypotheses of new phenomena in terms of mass or energy scale, as appropriate. This analysis excludes excited quarks with a mass below 4.09 TeV, color-octet scalars with a mass below 2.72 TeV, heavy W′ bosons with a mass below 2.45 TeV, chiral W∗ bosons with a mass below 1.75 TeV, and quantum black holes with six extra space-time dimensions with threshold mass below 5.82 TeV.
Resumo:
We search for evidence of physics beyond the Standard Model in the production of final states with multiple high transverse momentum jets, using 20.3 fb−1 of proton-proton collision data recorded by the ATLAS detector at s√ = 8 TeV. No excess of events beyond Standard Model expectations is observed, and upper limits on the visible cross-section for non-Standard Model production of multi-jet final states are set. Using a wide variety of models for black hole and string ball production and decay, the limit on the cross-section times acceptance is as low as 0.16 fb at the 95% CL for a minimum scalar sum of jet transverse momentum in the event of about 4.3 TeV. Using models for black hole and string ball production and decay, exclusion contours are determined as a function of the production mass threshold and the gravity scale. These limits can be interpreted in terms of lower-mass limits on black hole and string ball production that range from 4.6 to 6.2 TeV.
Resumo:
In this paper we design and develop several filtering strategies for the analysis of data generated by a resonant bar gravitational wave (GW) antenna, with the goal of assessing the presence (or absence) therein of long-duration monochromatic GW signals, as well as the eventual amplitude and frequency of the signals, within the sensitivity band of the detector. Such signals are most likely generated in the fast rotation of slightly asymmetric spinning stars. We develop practical procedures, together with a study of their statistical properties, which will provide us with useful information on the performance of each technique. The selection of candidate events will then be established according to threshold-crossing probabilities, based on the Neyman-Pearson criterion. In particular, it will be shown that our approach, based on phase estimation, presents a better signal-to-noise ratio than does pure spectral analysis, the most common approach.
Resumo:
OBJECTIVES: To determine inter-session and intra/inter-individual variations of the attenuations of aortic blood/myocardium with MDCT in the context of calcium scoring. To evaluate whether these variations are dependent on patients' characteristics. METHODS: Fifty-four volunteers were evaluated with calcium scoring non-enhanced CT. We measured attenuations (inter-individual variation) and standard deviations (SD, intra-individual variation) of the blood in the ascending aorta and of the myocardium of left ventricle. Every volunteer was examined twice to study the inter-session variation. The fat pad thickness at the sternum and noise (SD of air) were measured too. These values were correlated with the measured aortic/ventricular attenuations and their SDs (Pearson). Historically fixed thresholds (90 and 130 HU) were tested against different models based on attenuations of blood/ventricle. RESULTS: The mean attenuation was 46 HU (range, 17-84 HU) with mean SD 23 HU for the blood, and 39 HU (10-82 HU) with mean SD 18 HU for the myocardium. The attenuation/SD of the blood were significantly higher than those of the myocardium (p < 0.01). The inter-session variation was not significant. There was a poor correlation between SD of aortic blood/ventricle with fat thickness/noise. Based on existing models, 90 HU threshold offers a confidence interval of approximately 95% and 130 HU more than 99%. CONCLUSIONS: Historical thresholds offer high confidence intervals for exclusion of aortic blood/myocardium and by the way for detecting calcifications. Nevertheless, considering the large variations of blood/myocardium CT values and the influence of patient's characteristics, a better approach might be an adaptive threshold.
Resumo:
The original contribution of this thesis to knowledge are novel digital readout architectures for hybrid pixel readout chips. The thesis presents asynchronous bus-based architecture, a data-node based column architecture and a network-based pixel matrix architecture for data transportation. It is shown that the data-node architecture achieves readout efficiency 99% with half the output rate as a bus-based system. The network-based solution avoids “broken” columns due to some manufacturing errors, and it distributes internal data traffic more evenly across the pixel matrix than column-based architectures. An improvement of > 10% to the efficiency is achieved with uniform and non-uniform hit occupancies. Architectural design has been done using transaction level modeling (TLM) and sequential high-level design techniques for reducing the design and simulation time. It has been possible to simulate tens of column and full chip architectures using the high-level techniques. A decrease of > 10 in run-time is observed using these techniques compared to register transfer level (RTL) design technique. Reduction of 50% for lines-of-code (LoC) for the high-level models compared to the RTL description has been achieved. Two architectures are then demonstrated in two hybrid pixel readout chips. The first chip, Timepix3 has been designed for the Medipix3 collaboration. According to the measurements, it consumes < 1 W/cm^2. It also delivers up to 40 Mhits/s/cm^2 with 10-bit time-over-threshold (ToT) and 18-bit time-of-arrival (ToA) of 1.5625 ns. The chip uses a token-arbitrated, asynchronous two-phase handshake column bus for internal data transfer. It has also been successfully used in a multi-chip particle tracking telescope. The second chip, VeloPix, is a readout chip being designed for the upgrade of Vertex Locator (VELO) of the LHCb experiment at CERN. Based on the simulations, it consumes < 1.5 W/cm^2 while delivering up to 320 Mpackets/s/cm^2, each packet containing up to 8 pixels. VeloPix uses a node-based data fabric for achieving throughput of 13.3 Mpackets/s from the column to the EoC. By combining Monte Carlo physics data with high-level simulations, it has been demonstrated that the architecture meets requirements of the VELO (260 Mpackets/s/cm^2 with efficiency of 99%).
Resumo:
Photothermal deflection technique was used for determining the laser damage threshold of polymer samples of teflon (PTFE) and nylon. The experiment was conducted using a Q-switched Nd-YAG laser operating at its fundamental wavelength (1-06μm, pulse width 10 nS FWHM) as irradiation source and a He-Ne laser as the probe beam, along with a position sensitive detector. The damage threshold values determined by photothermal deflection method were in good agreement with those determined by other methods.
Resumo:
A new approach is presented to identify the number of incoming signals in antenna array processing. The new method exploits the inherent properties existing in the noise eigenvalues of the covariance matrix of the array output. A single threshold has been established concerning information about the signal and noise strength, data length, and array size. When the subspace-based algorithms are adopted the computation cost of the signal number detector can almost be neglected. The performance of the threshold is robust against low SNR and short data length.
Resumo:
The upgrade of the Mainz Mikrotron (MAMI) electron accelerator facility in 2007 which raised the beam energy up to 1.5,GeV, gives the opportunity to study strangeness production channels through electromagnetic process. The Kaon Spectrometer (KAOS) managed by the A1 Collaboration, enables the efficient detection of the kaons associated with strangeness electroproduction. Used as a single arm spectrometer, it can be combined with the existing high-resolution spectrometers for exclusive measurements in the kinematic domain accessible to them.rnrnFor studying hypernuclear production in the ^A Z(e,e'K^+) _Lambda ^A(Z-1) reaction, the detection of electrons at very forward angles is needed. Therefore, the use of KAOS as a double-arm spectrometer for detection of kaons and the electrons at the same time is mandatory. Thus, the electron arm should be provided with a new detector package, with high counting rate capability and high granularity for a good spatial resolution. To this end, a new state-of-the-art scintillating fiber hodoscope has been developed as an electron detector.rnrnThe hodoscope is made of two planes with a total of 18432 scintillating double-clad fibers of 0.83 mm diameter. Each plane is formed by 72 modules. Each module is formed from a 60deg slanted multi-layer bundle, where 4 fibers of a tilted column are connected to a common read out. The read-out is made with 32 channels of linear array multianode photomultipliers. Signal processing makes use of newly developed double-threshold discriminators. The discriminated signal is sent in parallel to dead-time free time-to-digital modules and to logic modules for triggering purposes.rnrnTwo fiber modules were tested with a carbon beam at GSI, showing a time resolution of 220 ps (FWHM) and a position residual of 270 microm m (FWHM) with a detection efficiency epsilon>99%.rnrnThe characterization of the spectrometer arm has been achieved through simulations calculating the transfer matrix of track parameters from the fiber detector focal plane to the primary vertex. This transfer matrix has been calculated to first order using beam transport optics and has been checked by quasielastic scattering off a carbon target, where the full kinematics is determined by measuring the recoil proton momentum. The reconstruction accuracy for the emission parameters at the quasielastic vertex was found to be on the order of 0.3 % in first test realized.rnrnThe design, construction process, commissioning, testing and characterization of the fiber hodoscope are presented in this work which has been developed at the Institut für Kernphysik of the Johannes Gutenberg - Universität Mainz.
Resumo:
This Letter presents a search for quantum black-hole production using 20.3 fb(-1) of data collected with the ATLAS detector in pp collisions at the LHC at root s = 8 TeV. The quantum black holes are assumed to decay into a final state characterized by a lepton (electron or muon) and a jet. In either channel, no event with a lepton-jet invariant mass of 3.5 TeV or more is observed, consistent with the expected background. Limits are set on the product of cross sections and branching fractions for the lepton + jet final states of quantum black holes produced in a search region for invariant masses above 1 TeV. The combined 95% confidence level upper limit on this product for quantum black holes with threshold mass above 3.5 TeV is 0.18 fb. This limit constrains the threshold quantum black-hole mass to be above 5.3 TeV in the model considered.
Resumo:
A search for an excess of events with multiple high transverse momentum objects including charged leptons and jets is presented, using 20.3 fb−1 of proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2012 at a centre-of-mass energy of √s = 8TeV. No excess of events beyond Standard Model expectations is observed. Using extra-dimensional models for black hole and string ball production and decay, exclusion contours are determined as a function of the mass threshold for production and the fundamental gravity scale for two, four and six extra dimensions. For six extra dimensions, mass thresholds of 4.8–6.2TeV are excluded at 95% confidence level, depending on the fundamental gravity scale and model assumptions. Upper limits on the fiducial cross-sections for non-Standard Model production of these final states are set.