896 resultados para thin plate spline


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several countries have been passed by change processes in their fundamental geodesic structure with the focus on the adoption of geocentric reference systems. In Brazil, the adoption of the SIRGAS2000 evolves the coexistence of two realizations from the COrrego Alegre system, two realizations from the SAD69 system and one realization from the SIRGAS2000 system. To make use of products in the old reference systems, methods of coordinate transformation between the existent reference frames are necessary. So, in this paper one solution for the transformation between coordinates from different reference frames, based on Thin-Plate Splines (TPS), that allows the estimation of parameters from one linear transformation and also one non-linear model is presented. The TPS model was developed to work with tridimensional coordinates and in this paper the results and analysis are performed with simulated data and also with data from the official Brazilian Geodetic System (SGB). In the check points from SAD69 stations (realization of 1996 - SAD69/96), the values of RMSE obtained were of 78,2 mm in latitude and 67,5 mm in longitude, before the transformation to the SIRGAS2000. In the comparison between the TPS model and ProGriD (Brazilian software provided by IBGE), the statistical indicators were reduced in 97%, by using the TPS model. Based in the obtained results from real dataset, the TPS model appears to be promising, since it allows improving the quality of transformation process with simultaneous distortion modeling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

International audience

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method for the construction of a patient-specific model of a scoliotic torso for surgical planning via inter- patient registration is presented. Magnetic Resonance Images (MRI) of a generic model are registered to surface topography (TP) and X-ray data of a test patient. A partial model is first obtained via thin-plate spline registration between TP and X-ray data of the test patient. The MRIs from the generic model are then fit into the test patient using articulated model registration between the vertebrae of the generic model’s MRIs in prone position and the test patient’s X-rays in standing position. A non-rigid deformation of the soft tissues is performed using a modified thin-plate spline constrained to maintain bone rigidity and to fit in the space between the vertebrae and the surface of the torso. Results show average Dice values of 0.975 ± 0.012 between the MRIs following inter-patient registration and the surface topography of the test patient, which is comparable to the average value of 0.976 ± 0.009 previously obtained following intra-patient registration. The results also show a significant improvement compared to rigid inter-patient registration. Future work includes validating the method on a larger cohort of patients and incorporating soft tissue stiffness constraints. The method developed can be used to obtain a geometric model of a patient including bone structures, soft tissues and the surface of the torso which can be incorporated in a surgical simulator in order to better predict the outcome of scoliosis surgery, even if MRI data cannot be acquired for the patient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background This paper presents a method that registers MRIs acquired in prone position, with surface topography (TP) and X-ray reconstructions acquired in standing position, in order to obtain a 3D representation of a human torso incorporating the external surface, bone structures, and soft tissues. Methods TP and X-ray data are registered using landmarks. Bone structures are used to register each MRI slice using an articulated model, and the soft tissue is confined to the volume delimited by the trunk and bone surfaces using a constrained thin-plate spline. Results The method is tested on 3 pre-surgical patients with scoliosis and shows a significant improvement, qualitatively and using the Dice similarity coefficient, in fitting the MRI into the standing patient model when compared to rigid and articulated model registration. The determinant of the Jacobian of the registration deformation shows higher variations in the deformation in areas closer to the surface of the torso. Conclusions The novel, resulting 3D full torso model can provide a more complete representation of patient geometry to be incorporated in surgical simulators under development that aim at predicting the effect of scoliosis surgery on the external appearance of the patient’s torso.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a method based on articulated models for the registration of spine data extracted from multimodal medical images of patients with scoliosis. With the ultimate aim being the development of a complete geometrical model of the torso of a scoliotic patient, this work presents a method for the registration of vertebral column data using 3D magnetic resonance images (MRI) acquired in prone position and X-ray data acquired in standing position for five patients with scoliosis. The 3D shape of the vertebrae is estimated from both image modalities for each patient, and an articulated model is used in order to calculate intervertebral transformations required in order to align the vertebrae between both postures. Euclidean distances between anatomical landmarks are calculated in order to assess multimodal registration error. Results show a decrease in the Euclidean distance using the proposed method compared to rigid registration and more physically realistic vertebrae deformations compared to thin-plate-spline (TPS) registration thus improving alignment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mammalian scapula is a complex morphological structure, composed of two ossification plates that fuse into a single structure. Most studies on morphological differentiation in the scapula have considered it to be a simple, spatially integrated structure, primarily influenced by the important locomotor function presented by this element. We used recently developed geometric morphometric techniques to test and quantify functional and phylogenetic influences on scapular shape variation in fossil and extant xenarthran mammals. The order Xenarthra is well represented in the fossil record and presents a stable phylogenetic hypothesis for its genealogical history. In addition, its species present a large variety of locomotor habits. Our results show that approximately half of the shape variation in the scapula is due to phylogenetic heritage. This is contrary to the view that the scapula is influenced only by functional demands. There are large-scale shape transformations that provide biomechanical adaptation for the several habits (arboreality, terrestriality, and digging), and small scale-shape transformations (mostly related to the coracoid process) that are not influenced by function. A nonlinear relationship between morphometric and phylogenetic distances indicates the presence of a complex mixture of evolutionary processes acting on shape differentiation of the scapula. J. Morphol. 241,251-263, 1999. (C) 1999 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The model of development and evolution of complex morphological structures conceived by Atchley and Hall in 1991 (Biol. Rev. 66:101-157), which establishes that changes at the macroscopic, morphogenetic level can be statistically detected as variation in skeletal units at distinct scales, was applied in combination with the formalism of geometric morphometrics to study variation in mandible shape among populations of the rodent species Thrichomys apereoides. The thin-plate spline technique produced geometric descriptors of shape derived from anatomical landmarks in the mandible, which we used with graphical and inferential approaches to partition the contribution of global and localized components to the observed differentiation in mandible shape. A major pattern of morphological differentiation in T. apereoides is attributable to localized components of shape at smaller geometric scales associated with specific morphogenetic units of the mandible. On the other hand, a clinal trend of variation is associated primarily with localized components of shape at larger geometric scales. Morphogenetic mechanisms assumed to be operating to produce the observed differentiation in the specific units of the mandible include mesenchymal condensation differentiation, muscle hypertrophy, and tooth growth. Perspectives for the application of models of morphological evolution and geometric morphometrics to morphologically based systematic biology are considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To investigate the effects of the standard (Class II) Balters bionator in growing patients with Class II malocclusion with mandibular retrusion by using morphometrics (thin-plate spline [TPS] analysis). Materials and Methods: Thirty-one Class II patients (17 male and 14 female) were treated with the Balters bionator (bionator group). Mean age at the start of treatment (T0) was 10.3 years, while it was 13 years at the end of treatment (T1). Mean treatment time was 2 years and 2 months. The control group consisted of 22 subjects (14 male and 8 female) with untreated Class II malocclusion. Mean age at T0 was 10.2 years, while it was 12.2 years at T1. The observation period lasted 2 years on average. TPS analysis evaluated statistical (permutation tests) differences in the craniofacial shape and size between the bionator and control groups. Results: Through TPS analysis (deformation grids) the bionator group showed significant shape changes in the mandible that could be described as a mandibular forward and downward displacement. The control group showed no statistically significant differences in the correction of Class II malocclusion. Conclusions: Bionator appliance is able to induce significant mandibular shape changes that lead to the correction of Class II dentoskeletal disharmony. © 2013 by The EH Angle Education and Research Foundation, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)