452 resultados para synapses
Resumo:
In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. The lateral amygdala is a key site for synaptic plasticity underlying conditioned fear, which can both trigger and be coincident with the stress response. A large body of electrophysiological data shows rapid regulation of neuronal excitability by steroid hormone receptors. Despite the importance of these receptors, to date, only the glucocorticoid receptor has been anatomically localized to the membrane. We investigated the subcellular sites of mineralocorticoid receptors in the lateral amygdala of the Sprague-Dawley rat. Immunoblot analysis revealed the presence of mineralocorticoid receptors in the amygdala. Using electron microscopy, we found mineralocorticoid receptors expressed at both nuclear including: glutamatergic and GABAergic neurons and extra nuclear sites including: presynaptic terminals, neuronal dendrites, and dendritic spines. Importantly we also observed mineralocorticoid receptors at postsynaptic membrane densities of excitatory synapses. These data provide direct anatomical evidence supporting the concept that, at some synapses, synaptic transmission is regulated by mineralocorticoid receptors. Thus part of the stress signaling response in the brain is a direct modulation of the synapse itself by adrenal steroids.
Resumo:
Lithium is an effective mood stabilizer but its use is associated with many side effects. Electrophysiological recordings of miniature excitatory postsynaptic currents (mEPSCs) mediated by glutamate receptor AMPA-subtype (AMPARs) in hippocampal pyramidal neurons revealed that CLi (therapeutic concentration of 1 mM lithium, from days in vitro 4-10) decreased the mean amplitude and mean rectification index (RI) of AMPAR mEPSCs. Lowered mean RI indicate that contribution of Ca2+-permeable AMPARs in synaptic events is higher in CLi neurons (supported by experiments sensitive to Ca2+-permeable AMPAR modulation). Co-inhibiting PKA, GSK-3 beta and glutamate reuptake was necessary to bring about changes in AMPAR mEPSCs similar to that seen in CLi neurons. FM1-43 experiments revealed that recycling pool size was affected in CLi cultures. Results from minimum loading, chlorpromazine treatment and hyperosmotic treatment experiments indicate that endocytosis in CLi is affected while not much difference is seen in modes of exocytosis. CLi cultures did not show the high KCl associated presynaptic potentiation observed in control cultures. This study, by calling attention to long-term lithium-exposure-induced synaptic changes, might have implications in understanding the side effects such as CNS complications occurring in perinatally exposed babies and cognitive dulling seen in patients on lithium treatment.
Resumo:
We have recently shown that the transient receptor potential vanilloid type 1 (TRPV1), a non-selective cation channel in the peripheral and central nervous system, is localized at postsynaptic sites of the excitatory perforant path synapses in the hippocampal dentate molecular layer (ML). In the present work, we have studied the distribution of TRPV1 at inhibitory synapses in the ML. With this aim, a preembedding immunogold method for high resolution electron microscopy was applied to mouse hippocampus. About 30% of the inhibitory synapses in the ML are TRPV1 immunopositive, which is mostly localized perisynaptically (similar to 60% of total immunoparticles) at postsynaptic dendritic membranes receiving symmetric synapses in the inner 1/3 of the layer. This TRPV1 pattern distribution is not observed in the ML of TRPV1 knock-out mice. These findings extend the knowledge of the subcellular localization of TRPV1 to inhibitory synapses of the dentate molecular layer where the channel, in addition to excitatory synapses, is present.
Resumo:
The trajectory of the somatic membrane potential of a cortical neuron exactly reflects the computations performed on its afferent inputs. However, the spikes of such a neuron are a very low-dimensional and discrete projection of this continually evolving signal. We explored the possibility that the neuron's efferent synapses perform the critical computational step of estimating the membrane potential trajectory from the spikes. We found that short-term changes in synaptic efficacy can be interpreted as implementing an optimal estimator of this trajectory. Short-term depression arose when presynaptic spiking was sufficiently intense as to reduce the uncertainty associated with the estimate; short-term facilitation reflected structural features of the statistics of the presynaptic neuron such as up and down states. Our analysis provides a unifying account of a powerful, but puzzling, form of plasticity.
Resumo:
The hippocampus, being sensitive to stress and glucocorticoids, plays significant roles in certain types of learning and memory. Therefore, the hippocampus is probably involved in the increasing drug use, drug seeking, and relapse caused by stress. We have studied the effect of stress with morphine on synaptic plasticity in the CA1 region of the hippocampus in vivo and on a delayed-escape paradigm of the Morris water maze. Our results reveal that acute stress enables long-term depression (LTD) induction by low-frequency stimulation (LFS) but acute morphine causes synaptic potentiation. Remarkably, exposure to an acute stressor reverses the effect of morphine from synaptic potentiation ( similar to 20%) to synaptic depression ( similar to 40%), precluding further LTD induction by LFS. The synaptic depression caused by stress with morphine is blocked either by the glucocorticoid receptor antagonist RU38486 or by the NMDA-receptor antagonist D-APV. Chronic morphine attenuates the ability of acute morphine to cause synaptic potentiation, and stress to enable LTD induction, but not the ability of stress in tandem with morphine to cause synaptic depression. Furthermore, corticosterone with morphine during the initial phase of drug use promotes later delayed-escape behavior, as indicated by the morphine-reinforced longer latencies to escape, leading to persistent morphine-seeking after withdrawal. These results suggest that hippocampal synaptic plasticity may play a significant role in the effects of stress or glucocorticoids on opiate addiction.
Resumo:
The subiculum, which is the primary target of CA1 pyramidal neurons and sending efferent fibres to many brain regions, serves as a hippocampal interface in the neural information processes between hippocampal formation and neocortex. Long-term depression (LTD) is extensively studied in the hippocampus, but not at the CA1-subicular synaptic transmission. Using whole-cell EPSC recordings in the brain slices of young rats, we demonstrated that the pairing protocols of low frequency stimulation (LFS) at 3 Hz and postsynaptic depolarization of -50 mVelicited a reliable LTD in the subiculum. The LTD did not cause the changes of the paired-pulse ratio of EPSC. Furthermore, it did not depend on either NMDA receptors or voltage-gated calcium channels (VGCCs). Bath application of the G-protein coupled muscarinic acetylcholine receptors (mAChRs) antagonists, atropine or scopolamine, blocked the LTD, suggesting that mAChRs are involved in the LTD. It was also completely blocked by either the Ca2+ chelator BAPTA or the G-protein inhibitor GDP-beta-S in the intracellular solution. This type of LTD in the subiculum may play a particular role in the neural information processing between the hippocampus and neocortex. (c) 2005 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Resumo:
Adaptive changes in brain areas following drug withdrawal are believed to contribute to drug seeking and relapse. Cocaine withdrawal alters the expression of GluR1 and GluR2/3 subunits of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) rec
Resumo:
A venerable history of classical work on autoassociative memory has significantly shaped our understanding of several features of the hippocampus, and most prominently of its CA3 area, in relation to memory storage and retrieval. However, existing theories of hippocampal memory processing ignore a key biological constraint affecting memory storage in neural circuits: the bounded dynamical range of synapses. Recent treatments based on the notion of metaplasticity provide a powerful model for individual bounded synapses; however, their implications for the ability of the hippocampus to retrieve memories well and the dynamics of neurons associated with that retrieval are both unknown. Here, we develop a theoretical framework for memory storage and recall with bounded synapses. We formulate the recall of a previously stored pattern from a noisy recall cue and limited-capacity (and therefore lossy) synapses as a probabilistic inference problem, and derive neural dynamics that implement approximate inference algorithms to solve this problem efficiently. In particular, for binary synapses with metaplastic states, we demonstrate for the first time that memories can be efficiently read out with biologically plausible network dynamics that are completely constrained by the synaptic plasticity rule, and the statistics of the stored patterns and of the recall cue. Our theory organises into a coherent framework a wide range of existing data about the regulation of excitability, feedback inhibition, and network oscillations in area CA3, and makes novel and directly testable predictions that can guide future experiments.
Resumo:
The beta-adrenergic receptor kinase (beta ARK) phosphorylates the agonist-occupied beta-adrenergic receptor to promote rapid receptor uncoupling from Gs, thereby attenuating adenylyl cyclase activity. Beta ARK-mediated receptor desensitization may reflect a general molecular mechanism operative on many G-protein-coupled receptor systems and, particularly, synaptic neurotransmitter receptors. Two distinct cDNAs encoding beta ARK isozymes were isolated from rat brain and sequenced. The regional and cellular distributions of these two gene products, termed beta ARK1 and beta ARK2, were determined in brain by in situ hybridization and by immunohistochemistry at the light and electron microscopic levels. The beta ARK isozymes were found to be expressed primarily in neurons distributed throughout the CNS. Ultrastructurally, beta ARK1 and beta ARK2 immunoreactivities were present both in association with postsynaptic densities and, presynaptically, with axon terminals. The beta ARK isozymes have a regional and subcellular distribution consistent with a general role in the desensitization of synaptic receptors.
Resumo:
Growth cone guidance and synaptic plasticity involve dynamic local changes in proteins at axons and dendrites. The Dual-Leucine zipper Kinase MAPKKK (DLK) has been previously implicated in synaptogenesis and axon outgrowth in C. elegans and other animals. Here we show that in C. elegans DLK-1 regulates not only proper synapse formation and axon morphology but also axon regeneration by influencing mRNA stability. DLK-1 kinase signals via a MAPKAP kinase, MAK-2, to stabilize the mRNA encoding CEBP-1, a bZip protein related to CCAAT/enhancer-binding proteins, via its 3'UTR. Inappropriate upregulation of cebp-1 in adult neurons disrupts synapses and axon morphology. CEBP-1 and the DLK-1 pathway are essential for axon regeneration after laser axotomy in adult neurons, and axotomy induces translation of CEBP-1 in axons. Our findings identify the DLK-1 pathway as a regulator of mRNA stability in synapse formation and maintenance and also in adult axon regeneration.
Resumo:
The synapsin proteins have different roles in excitatory and inhibitory synaptic terminals. We demonstrate a differential role between types of excitatory terminals. Structural and functional aspects of the hippocampal mossy fiber (MF) synapses were studied in wild-type (WT) mice and in synapsin double-knockout mice (DKO). A severe reduction in the number of synaptic vesicles situated more than 100 nm away from the presynaptic membrane active zone was found in the synapsin DKO animals. The ultrastructural level gave concomitant reduction in F-actin immunoreactivity observed at the periactive endocytic zone of the MF terminals. Frequency facilitation was normal in synapsin DKO mice at low firing rates (approximately 0.1 Hz) but was impaired at firing rates within the physiological range (approximately 2 Hz). Synapses made by associational/commissural fibers showed comparatively small frequency facilitation at the same frequencies. Synapsin-dependent facilitation in MF synapses of WT mice was attenuated by blocking F-actin polymerization with cytochalasin B in hippocampal slices. Synapsin III, selectively seen in MF synapses, is enriched specifically in the area adjacent to the synaptic cleft. This may underlie the ability of synapsin III to promote synaptic depression, contributing to the reduced frequency facilitation observed in the absence of synapsins I and II.
Resumo:
Efficient synaptic vesicle membrane recycling is one of the key factors required to sustain neurotransmission. We investigated potential differences in the compensatory endocytic machineries in two glutamatergic synapses with phasic and tonic patterns of activity in the lamprey spinal cord. Post-embedding immunocytochemistry demonstrated that proteins involved in synaptic vesicle recycling, including dynamin, intersectin, and synapsin, occur at higher levels (labeling per vesicle) in tonic dorsal column synapses than in phasic reticulospinal synapses. Synaptic vesicle protein 2 occurred at similar levels in the two types of synapse. After challenging the synapses with high potassium stimulation for 30 min the vesicle pool in the tonic synapse was maintained at a normal level, while that in the phasic synapse was partly depleted along with expansion of the plasma membrane and accumulation of clathrin-coated intermediates at the periactive zone. Thus, our results indicate that an increased efficiency of the endocytic machinery in a synapse may be one of the factors underlying the ability to sustain neurotransmission at high rates.
Resumo:
The cholesterol chelating agent, methyl-b-cyclodextrin (MbCD), alters synaptic function in many systems. At crayfish neuromuscular junctions, MbCD is reported to reduce excitatory junctional potentials (EJPs) by impairing impulse propagation to synaptic terminals, and to have no postsynaptic effects. We examined the degree to which physiological effects of MbCD correlate with its ability to reduce cholesterol, and used thermal acclimatization as an alternative method to modify cholesterol levels. MbCD impaired impulse propagation and decreased EJP amplitude by 40% (P,0.05) in preparations from crayfish acclimatized to 14uC but not from those acclimatized to 21uC. The reduction in EJP amplitude in the cold-acclimatized group was associated with a 49% reduction in quantal content (P,0.05). MbCD had no effect on input resistance in muscle fibers but decreased sensitivity to the neurotransmitter L-glutamate in both warm- and coldacclimatized groups. This effect was less pronounced and reversible in the warm-acclimatized group (90% reduction in cold, P,0.05; 50% reduction in warm, P,0.05). MbCD reduced cholesterol in isolated nerve and muscle from cold- and warmacclimatized groups by comparable amounts (nerve: 29% cold, 25% warm; muscle: 20% cold, 18% warm; P,0.05). This effect was reversed by cholesterol loading, but only in the warm-acclimatized group. Thus, effects of MbCD on glutamatesensitivity correlated with its ability to reduce cholesterol, but effects on impulse propagation and resulting EJP amplitude did not. Our results indicate that MbCD can affect both presynaptic and postsynaptic properties, and that some effects of MbCD are unrelated to cholesterol chelation.
Resumo:
Le fonctionnement du cortex cérébral nécessite l’action coordonnée de deux des sous-types majeurs de neurones, soient les neurones à projections glutamatergiques et les interneurones GABAergiques. Les interneurones GABAergiques ne constituent que 20 à 30% des cellules corticales par rapport au grand nombre de neurones glutamatergiques. Leur rôle est toutefois prépondérant puisqu’ils modulent fortement la dynamique et la plasticité des réseaux néocorticaux. Il n’est donc pas surprenant que les altérations de développement des circuits GABAergiques soient associées à plusieurs maladies du cerveau, incluant l’épilepsie, le syndrome de Rett et la schizophrénie. La compréhension des mécanismes moléculaires régissant le développement des circuits GABAergiques est une étape essentielle menant vers une meilleure compréhension de la façon dont les anormalités se produisent. Conséquemment, nous nous intéressons au rôle de l’acide polysialique (PSA) dans le développement des synapses GABAergiques. PSA est un homopolymère de chaînons polysialylés en α-2,8, et est exclusivement lié à la molécule d’adhésion aux cellules neuronales (NCAM) dans les cerveaux de mammifères. PSA est impliqué dans plusieurs processus développementaux, y compris la formation et la plasticité des synapses glutamatergiques, mais son rôle dans les réseaux GABAergiques reste à préciser. Les données générées dans le laboratoire du Dr. Di Cristo démontrent que PSA est fortement exprimé post- natalement dans le néocortex des rongeurs, que son abondance diminue au cours du développement, et, faits importants, que son expression dépend de l’activité visuelle i et est inversement corrélée à la maturation des synapses GABAergiques. La présente propose de caractériser les mécanismes moléculaires régulant l’expression de PSA dans le néocortex visuel de la souris. Les enzymes polysialyltransférases ST8SiaII (STX) et ST8SiaIV (PST) sont responsables de la formation de la chaîne de PSA sur NCAM. En contrôlant ainsi la quantité de PSA sur NCAM, ils influenceraient le développement des synapses GABAergiques. Mon projet consiste à déterminer comment l’expression des polysialyltransférases est régulée dans le néocortex visuel des souris durant la période post-natale; ces données sont à la fois inconnues, et cruciales. Nous utilisons un système de cultures organotypiques dont la maturation des synapses GABAergiques est comparable au modèle in vivo. L’analyse de l’expression génique par qPCR a démontré que l’expression des polysialyltransférases diminue au cours du développement; une baisse majeure corrélant avec l’ouverture des yeux chez la souris. Nous avons de plus illustré pour la première fois que l’expression de STX, et non celle de PST, est activité-dépendante, et que ce processus requiert l’activation du récepteur NMDA, une augmentation du niveau de calcium intracellulaire et la protéine kinase C (PKC). Ces données démontrent que STX est l’enzyme régulant préférentiellement le niveau de PSA sur NCAM au cours de la période post-natale dans le cortex visuel des souris. Des données préliminaires d’un second volet de notre investigation suggèrent que l’acétylation des histones et la méthylation de l’ADN pourraient également contribuer à la régulation de la transcription de cette enzyme durant le développement. Plus d’investigations seront toutefois nécessaires afin de confirmer cette hypothèse. En somme, la connaissance des mécanismes par lesquels l’expression des ii polysialyltransférases est modulée est essentielle à la compréhension du processus de maturation des synapses GABAergiques. Ceci permettrait de moduler pharmacologiquement l’expression de ces enzymes; la sur-expression de STX et/ou PST pourrait produire une plus grande quantité de PSA, déstabiliser les synapses GABAergiques, et conséquemment, ré-induire la plasticité cérébrale.
Resumo:
La dopamine (DA) est un neurotransmetteur impliqué dans la modulation de fonctions essentielles du cerveau telles que le contrôle des mouvements volontaires, le système de récompense et certains aspects de la cognition. Depuis sa découverte, la DA a attiré énormément d'attention scientifique en partie à cause des pathologies majeures associées aux dysfonctions du système DAergique, comme la maladie de Parkinson, la schizophrénie et la toxicomanie. On retrouve la majorité des neurones qui synthétisent la DA au niveau du mésencéphale ventral, dans les noyaux de la substance noire compacte (SNc) et de l'aire tegmentaire ventrale (ATV). Ces neurones projettent leurs axones dans un très dense réseau de fibres qui s'organisent en trois voies DAergiques classiques: la voie nigrostriée, la voie mésolimbique et la voie mésocorticale. La transmission DAergique s'effectue par l'activation de récepteurs de la DA qui font partie de la grande famille des récepteurs couplés aux protéines G (RCPGs). Les récepteurs de la DA sont abondamment exprimés aussi bien par les neurones DAergiques que par les neurones des régions cibles, ce qui implique que la compréhension de la signalisation et des fonctions particulières des récepteurs de la DA pré- et postsynaptiques représente un enjeu crucial dans l'étude du système DAergique. Cette thèse de doctorat se sépare donc en deux volets distincts: le premier s'intéresse à la régulation du récepteur D2 présynaptique par la neurotensine (NT), un neuropeptide intimement lié à la modulation du système DAergique; le deuxième s'intéresse au côté postsynaptique du système DAergique, plus particulièrement à la ségrégation de l'expression des récepteurs de la DA dans le striatum et aux fonctions de ces récepteurs dans l'établissement des circuits neuronaux excitateurs prenant place dans cette région. Dans la première partie de cette thèse, nous démontrons que l'activation du récepteur à haute affinité de la NT, le NTR1, provoque une internalisation hétérologue du récepteur D2, avec une amplitude et une cinétique différente selon l'isoforme D2 observé. Cette internalisation hétérologue dépend de la protéine kinase C (PKC), et nous montrons que la surexpression d'un récepteur D2 muté sur des sites de phosphorylation par la PKC ii ainsi que l'inhibition de l'expression de β-arrestine1 par ARNs interférents dans des neurones DAergiques bloquent complètement l'interaction fonctionnelle entre le NTR1 et le D2. Dans la deuxième partie de cette thèse, nous démontrons d'abord que la ségrégation de l'expression des récepteurs D1 et D2 dans le striatum est déjà bien établie dès le 18e jour embryonnaire, bien qu'elle progresse encore significativement aux jours 0 et 14 postnataux. Nos résultats témoignent aussi d'un maintien complet de cette ségrégation lorsque les neurones striataux sont mis en culture aussi bien en présence ou en absence de neurones corticaux et/ou mésencéphaliques. Ensuite, nous montrons que la présence de neurones mésencéphaliques stimule la formation d’épines et de synapses excitatrices sur les neurones striataux épineux exprimant le récepteur D2 (MSN-D2). Le co-phénotype glutamatergique des neurones dopaminergiques semble nécessaire à une grande partie de cet effet. Par ailleurs, le nombre total de terminaisons excitatrices formées sur les MSN-D2 par les neurones corticaux et mésencéphaliques apparaît être régit par un équilibre dynamique. Finalement, nous démontrons que le blocage de la signalisation des récepteurs D1 et D2 de la DA n'est pas nécessaire pour la formation des synapses excitatrices des MSN-D2, alors que l'antagonisme des récepteurs glutamatergiques ionotropes diminue la densité d'épines dendritiques et contrôle de façon opposée le nombre de terminaisons excitatrices corticales et mésencéphaliques. Globalement, ce travail représente une contribution significative pour une meilleure compréhension du fonctionnement normal du système DAergique. Ces découvertes sont susceptibles d’être utiles pour mieux comprendre les dysfonctions de ce système dans le cadre de pathologies du cerveau comme la maladie de Parkinson.