913 resultados para symmetrized Hamiltonian
Resumo:
We present a systematic investigation of calculating quantum dots (QDs) energy levels using finite element method in the frame of eight-band k . p method. Numerical results including piezoelectricity, electron and hole levels, as yell as wave functions are achieved. In the calculation of energy levels, we do observe spurious solutions (SSs) no matter Burt-Foreman or symmetrized Hamiltonians are used. Different theories are used to analyse the SSs, we find that the ellipticity theory can give a better explanation for the origin of SSs and symmetrized Hamiltonian is easier to lead to SSs. The energy levels simulated with the two Hamiltonians are compared to each other after eliminating SSs, different Hamiltonians cause a larger difference on electron energy levels than that on hole energy levels and this difference decreases with the increase of QD size.
Resumo:
In this paper we extend the ideas of Brugnano, Iavernaro and Trigiante in their development of HBVM($s,r$) methods to construct symplectic Runge-Kutta methods for all values of $s$ and $r$ with $s\geq r$. However, these methods do not see the dramatic performance improvement that HBVMs can attain. Nevertheless, in the case of additive stochastic Hamiltonian problems an extension of these ideas, which requires the simulation of an independent Wiener process at each stage of a Runge-Kutta method, leads to methods that have very favourable properties. These ideas are illustrated by some simple numerical tests for the modified midpoint rule.
Resumo:
There has been considerable recent work on the development of energy conserving one-step methods that are not symplectic. Here we extend these ideas to stochastic Hamiltonian problems with additive noise and show that there are classes of Runge-Kutta methods that are very effective in preserving the expectation of the Hamiltonian, but care has to be taken in how the Wiener increments are sampled at each timestep. Some numerical simulations illustrate the performance of these methods.
Resumo:
This chapter presents a novel control strategy for trajectory tracking of underwater marine vehicles that are designed using port-Hamiltonian theory. A model for neutrally buoyant underwater vehicles is formulated as a PHS, and then the tracking controller is designed for the horizontal plane-surge, sway and yaw. The control design is done by formulating the error dynamics as a set-point regulation port-Hamiltonian control problem. The control design is formulated in two steps. In the first step, a static-feedback tracking controller is designed, and the second step integral action is added. The global asymptotic stability of the closed loop system is proved and the performance of the controller is illustrated using a model of an open-frame offshore underwater vehicle.
Resumo:
Dynamic positioning of marine craft refers to the use of the propulsion system to regulate the vessel position and heading. This type of motion control is commonly used in the offshore industry for surface vessels, and it is also used for some underwater vehicles. In this paper, we use a port-Hamiltonian framework to design a novel nonlinear set-point-regulation controller with integral action. The controller handles input saturation and guarantees internal stability, rejection of unknown constant disturbances, and (integral-)input-to-state stability.
Resumo:
This paper presents a control design for tracking of attitude and speed of an underactuated slender-hull unmanned underwater vehicle (UUV). The control design is based on Port-Hamiltonian theory. The target dynamics (desired dynamic response) is shaped with particular attention to the target mass matrix so that the influence of the unactuated dynamics on the controlled system is suppressed. This results in achievable dynamics independent of uncontrolled states. Throughout the design, insight of the physical phenomena involved is used to propose the desired target dynamics. The performance of the design is demonstrated through simulation with a high-fidelity model.
Resumo:
This paper proposes a method for designing set-point regulation controllers for a class of underactuated mechanical systems in Port-Hamiltonian System (PHS) form. A new set of potential shape variables in closed loop is proposed, which can replace the set of open loop shape variables-the configuration variables that appear in the kinetic energy. With this choice, the closed-loop potential energy contains free functions of the new variables. By expressing the regulation objective in terms of these new potential shape variables, the desired equilibrium can be assigned and there is freedom to reshape the potential energy to achieve performance whilst maintaining the PHS form in closed loop. This complements contemporary results in the literature, which preserve the open-loop shape variables. As a case study, we consider a robotic manipulator mounted on a flexible base and compensate for the motion of the base while positioning the end effector with respect to the ground reference. We compare the proposed control strategy with special cases that correspond to other energy shaping strategies previously proposed in the literature.
Resumo:
This paper considers the manoeuvring of underactuated surface vessels. The control objective is to steer the vessel to reach a manifold which encloses a waypoint. A transformation of configuration variables and a potential field are used in a Port-Hamiltonian framework to design an energy-based controller. With the proposed controller, the geometric task associated with the manoeuvring problem depends on the desired potential energy (closed-loop) and the dynamic task depends on the total energy and damping. Therefore, guidance and motion control are addressed jointly, leading to model-energy-based trajectory generation.
Resumo:
This paper presents a novel control strategy for trajectory tracking of marine vehicles manoeuvring at low speed. The model of the marine vehicle is formulated as a Port-Hamiltonian system, and the tracking controller is designed using energy shaping and damping assignment. The controller guarantees global asymptotic stability and includes integral action for output variables with relative degree greater than one.
Resumo:
Port-Hamiltonian Systems (PHS) have a particular form that incorporates explicitly a function of the total energy in the system (energy function) and also other functions that describe structure of the system in terms of energy distribution. For PHS, the product of the input and output variables gives the rate of energy change. This type of systems have the property that under certain conditions on the energy function, the system is passive; and thus, stable. Therefore, if one can design a controller such that the closed-loop system retains - or takes - a PHS form, such closed-loop system will inherit the properties of passivity and stability. In this paper, the classical model of marine craft is put into a PHS form. It is shown that models used for positioning control do not have a PHS form due to a kinematic transformation, but a control design can be done such that the closed-loop system takes a PHS form. It is further shown how integral action can be added and how the PHS-form can be exploited to provide a procedure for control design that ensures passivity and thus stability.
Resumo:
This paper presents a trajectory-tracking control strategy for a class of mechanical systems in Hamiltonian form. The class is characterised by a simplectic interconnection arising from the use of generalised coordinates and full actuation. The tracking error dynamic is modelled as a port-Hamiltonian Systems (PHS). The control action is designed to take the error dynamics into a desired closed-loop PHS characterised by a constant mass matrix and a potential energy with a minimum at the origin. A transformation of the momentum and a feedback control is exploited to obtain a constant generalised mass matrix in closed loop. The stability of the close-loop system is shown using the close-loop Hamiltonian as a Lyapunov function. The paper also considers the addition of integral action to design a robust controller that ensures tracking in spite of disturbances. As a case study, the proposed control design methodology is applied to a fully actuated robotic manipulator.
Resumo:
We propose a new scheme for the use of constraints in setting up classical, Hamiltonian, relativistic, interacting particle theories. We show that it possesses both Poincaré invariance and invariance of world lines. We discuss the transition to the physical phase space and the nonrelativistic limit.
Resumo:
The problem of separability in recent models of classical relativistic interacting particles is examined. This physical requirement is shown to be more subtle than naive separability of all the constraints defining the system: it is adequate to be able to canonically transform the time-fixing constraints from an unseparated to a separated form when clusters emerge. Viewing separability in this way, and within a specific framework, we are led to a new no-interaction theorem which states the incompatibility of nontrivial interaction with relativistic invariance, separability, and invariant world lines for more than two particles.
Resumo:
Accurate extrapolations for the ground state energy per site of the one - dimensional Kondo chain system is obtained from exact finite system calculations carried out employing a valence bond scheme. An analysis of the ground state wave function indicates that the localized spin is quenched for all nonzero values of the Kondo exchange constant in one dimension.
Resumo:
A general analysis of symmetries and constraints for singular Lagrangian systems is given. It is shown that symmetry transformations can be expressed as canonical transformations in phase space, even for such systems. The relation of symmetries to generators, constraints, commutators, and Dirac brackets is clarified.