319 resultados para swd: Computeranimation
Resumo:
This paper proposes a new compression algorithm for dynamic 3d meshes. In such a sequence of meshes, neighboring vertices have a strong tendency to behave similarly and the degree of dependencies between their locations in two successive frames is very large which can be efficiently exploited using a combination of Predictive and DCT coders (PDCT). Our strategy gathers mesh vertices of similar motions into clusters, establish a local coordinate frame (LCF) for each cluster and encodes frame by frame and each cluster separately. The vertices of each cluster have small variation over a time relative to the LCF. Therefore, the location of each new vertex is well predicted from its location in the previous frame relative to the LCF of its cluster. The difference between the original and the predicted local coordinates are then transformed into frequency domain using DCT. The resulting DCT coefficients are quantized and compressed with entropy coding. The original sequence of meshes can be reconstructed from only a few non-zero DCT coefficients without significant loss in visual quality. Experimental results show that our strategy outperforms or comes close to other coders.
Resumo:
In this paper we propose a simple model for the coupling behavior of the human spine for an inverse kinematics framework. Our spine model exhibits anatomically correct motions of the vertebrae of virtual mannequins by coupling standard swing and revolute joint models. The adjustement of the joints is made with several simple (in)equality constraints, resulting in a reduction of the solution space dimensionality for the inverse kinematics solver. By reducing the solution space dimensionality to feasible spine shapes, we prevent the inverse kinematics algorithm from providing infeasible postures for the spine.In this paper, we exploit how to apply these simple constraints to the human spine by a strict decoupling of the swing and torsion motion of the vertebrae. We demonstrate the validity of our approach on various experiments.
Resumo:
In this paper we present XSAMPL3D, a novel language for the high-level representation of actions performed on objects by (virtual) humans. XSAMPL3D was designed to serve as action representation language in an imitation-based approach to character animation: First, a human demonstrates a sequence of object manipulations in an immersive Virtual Reality (VR) environment. From this demonstration, an XSAMPL3D description is automatically derived that represents the actions in terms of high-level action types and involved objects. The XSAMPL3D action description can then be used for the synthesis of animations where virtual humans of different body sizes and proportions reproduce the demonstrated action. Actions are encoded in a compact and human-readable XML-format. Thus, XSAMPL3D describtions are also amenable to manual authoring, e.g. for rapid prototyping of animations when no immersive VR environment is at the animator's disposal. However, when XSAMPL3D descriptions are derived from VR interactions, they can accomodate many details of the demonstrated action, such as motion trajectiories,hand shapes and other hand-object relations during grasping. Such detail would be hard to specify with manual motion authoring techniques only. Through the inclusion of language features that allow the representation of all relevant aspects of demonstrated object manipulations, XSAMPL3D is a suitable action representation language for the imitation-based approach to character animation.
Automatic classification of scientific records using the German Subject Heading Authority File (SWD)
Resumo:
The following paper deals with an automatic text classification method which does not require training documents. For this method the German Subject Heading Authority File (SWD), provided by the linked data service of the German National Library is used. Recently the SWD was enriched with notations of the Dewey Decimal Classification (DDC). In consequence it became possible to utilize the subject headings as textual representations for the notations of the DDC. Basically, we we derive the classification of a text from the classification of the words in the text given by the thesaurus. The method was tested by classifying 3826 OAI-Records from 7 different repositories. Mean reciprocal rank and recall were chosen as evaluation measure. Direct comparison to a machine learning method has shown that this method is definitely competitive. Thus we can conclude that the enriched version of the SWD provides high quality information with a broad coverage for classification of German scientific articles.