795 resultados para sulfated polysaccharides
Resumo:
Polysaccharides extracted from Ulva pertusa Kjellm ( Chlorophyta) are a group of sulfated heteropolysaccharides, the ulvans. In this study, different molecular weight ulvans were prepared by H2O2 degradation and their antioxidant activities investigated including superoxide and hydroxyl radical scavenging activity, reducing power and metal chelating ability. The molecular weights of natural and degraded ulvans were 151.7, 64.5, 58.0, and 28.2 kDa, respectively, as determined by high performance gel permeation chromatography. Among the four samples, U-3 ( the lowest molecular weight sample) showed significant inhibitory effects on superoxide and hydroxyl radicals with IC50 values of 22.1 mu g mL(-1) and 2.8 mg mL(-1); its reducing power and metal chelating ability were also the strongest among the four samples. All the other samples also demonstrated strong activity against superoxide radicals. The results indicated that molecular weight had a significant effect on the antioxidant activity of ulvan with low molecular weight ulvan having stronger antioxidant activity.
Resumo:
Ulvan, a sulfated polysaccharide from Ulva pertusa, was degraded to yield two low molecular weight fractions U1 and U2. The molecular weights of ulvan and its fractions were determined and varied from 151.6 to 28.2 kDa. They were fed to rats on a hypercholesterolemic diet for 21 days to evaluate and compare the antihyperlipidemic actions. Ulvan-based diet significantly lowered the levels of serum total cholesterol (-45.2%, P < 0.05) and low density lipoprotein cholesterol (LDL-cholesterol, -54.1%, P < 0.05). While U1- and U2-based diets significantly elevated the levels of serum high density lipoprotein cholesterol (HDL-cholesterol, +22.0% for U1, not significant; +61.0% for U2; P < 0.05) and reduced triglyceride (TG, -82.4% for U1, -77.7% for U2; P < 0.05) in rats as compared to control diet. In addition, consumptions of various ulvans significantly increased fecal bile acid excrement. The results indicated that ulvans with different molecular weights exhibited diverse effects on lipid metabolism. The high molecular weight ulvan was effective in serum total and LDL-cholesterol, whereas low molecular weight fractions were in TG and HDL-cholesterol. The fractions were considered to be more beneficial to hyperlipidemia associated with diabetes over ulvan. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The activation of pre-kininogenin to kininogenin (pre-kallikrein to kallikrein) is one of the steps in the series of reactions of a complex system, linked also to fibrinolysis and coagulation, that leads to kinin release in plasma (See Cochrane et al., 1976; Wuepper, 1976; Kaplan et al., 1976; Kaplan et al., 1976). For human plasma, a test using kaolin as activator and measuring kallikrein activity with the chromogenic substrate Chromozym PK (Nα-benzoyl-prolyl-phenylalanyl-arginyl-nitroanilide, Pentapharm, Basle) is routinely employed. The purpose of this paper is to further study the mechanism of this activation, by means of different activators and using as inhibitor hexadimethrine bromide (Polybrene). Besides kaolin, sulfated polysaccharides, such as heparin and cellulose sulfate are able to activate pre-kininogenin to kininogenin. Hexadimethrine as expected, inhibited the activation by heparin and also that by cellulose sulfate. The activation by kaolin however followed a different pattern suggesting, at least partially, a different mode of action of this activator. © 1979.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The sulfated polysaccharides extracted from algae possess excellent antioxidant activities. In this study, we prepared five polysaccharides extracted from five algae including one brown alga Laminaria japonica. one red alga Porphyra haitanensis and three green algae Ulva pertusa, Enteromorpha linza and Bryopsis plumose. And then the antioxidant activities of all the samples were investigated including scavenging effects of superoxide and hydroxyl radicals, and reducing power. The chemical analysis and FT-IR spectrum showed these extracts were polysaccharides. And in addition, we found that certain polysaccharide exhibited stronger antioxidant activity in certain antioxidant activity. Factors effecting and attributing to radical scavenging effect need to be further studied. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Sea salt is a natural product obtained from the evaporation of seawater in saltpans due to the combined effect of wind and sunlight. Nowadays, there is a growing interest for protection and re-valorisation of saltpans intrinsically associated to the quality of sea salt that can be evaluated by its physico-chemical properties. These man-made systems can be located in different geographical areas presenting different environmental surroundings. During the crystallization process, organic compounds coming from these surroundings can be incorporated into sea salt crystals, influencing their final composition. The organic matter associated to sea salt arises from three main sources: algae, surrounding bacterial community, and anthropogenic activity. Based on the hypothesis that sea salt contains associated organic compounds that can be used as markers of the product, including saltpans surrounding environment, the aim of this PhD thesis was to identify these compounds. With this purpose, this work comprised: 1) a deep characterisation of the volatile composition of sea salt by headspace solid phase microextraction combined with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (HS-SPME/GCGC–ToFMS) methodology, in search of potential sea salt volatile markers; 2) the development of a methodology to isolate the polymeric material potentially present in sea salt, in amounts that allow its characterisation in terms of polysaccharides and protein; and 3) to explore the possible presence of triacylglycerides. The high chromatographic resolution and sensitivity of GC×GC–ToFMS enabled the separation and identification of a higher number of volatile compounds from sea salt, about three folds, compared to unidimentional chromatography (GC–qMS). The chromatographic contour plots obtained revealed the complexity of marine salt volatile composition and confirmed the relevance of GC×GC–ToFMS for this type of analysis. The structured bidimentional chromatographic profile arising from 1D volatility and 2D polarity was demonstrated, allowing more reliable identifications. Results obtained for analysis of salt from two locations in Aveiro and harvested over three years suggest the loss of volatile compounds along the time of storage of the salt. From Atlantic Ocean salts of seven different geographical origins, all produced in 2007, it was possible to identify a sub-set of ten compounds present in all salts, namely 6-methyl-5-hepten-2-one, 2,2,6-trimethylcyclohexanone, isophorone, ketoisophorone, β-ionone-5,6-epoxide, dihydroactinidiolide, 6,10,14-trimethyl-2-pentadecanone, 3-hydroxy-2,4,4-trimethylpentyl 2-methylpropanoate, 2,4,4-trimethylpentane-1,3-diyl bis(2-methylpropanoate), and 2-ethyl-1-hexanol. These ten compounds were considered potential volatile markers of sea salt. Seven of these compounds are carotenoid-derived compounds, and the other three may result from the integration of compounds from anthropogenic activity as metabolites of marine organisms. The present PhD work also allowed the isolation and characterisation, for the first time, of polymeric material from sea salt, using 16 Atlantic Ocean salts. A dialysis-based methodology was developed to isolate the polymeric material from sea salt in amounts that allowed its characterisation. The median content of polymeric material isolated from the 16 salts was 144 mg per kg of salt, e.g. 0.014% (w/w). Mid-infrared spectroscopy and thermogravimetry revealed the main occurrence of sulfated polysaccharides, as well as the presence of protein in the polymeric material from sea salt. Sea salt polysaccharides were found to be rich in uronic acid residues (21 mol%), glucose (18), galactose (16), and fucose (13). Sulfate content represented a median of 45 mol%, being the median content of sulfated polysaccharides 461 mg/g of polymeric material, which accounted for 66 mg/kg of dry salt. Glycosidic linkage composition indicates that the main sugar residues that could carry one or more sulfate groups were identified as fucose and galactose. This fact allowed to infer that the polysaccharides from sea salt arise mainly from algae, due to their abundance and composition. The amino acid profile of the polymeric material from the 16 Atlantic Ocean salts showed as main residues, as medians, alanine (25 mol%), leucine (14), and valine (14), which are hydrophobic, being the median protein content 35 mg/g, i.e. 4,9 mg per kg of dry salt. Beside the occurrence of hydrophobic volatile compounds in sea salt, hydrophobic non-volatile compounds were also detected. Triacylglycerides were obtained from sea salt by soxhlet extraction with n-hexane. Fatty acid composition revealed palmitic acid as the major residue (43 mol%), followed by stearic (13), linolenic (13), oleic (12), and linoleic (9). Sea salt triacylglycerides median content was 1.5 mg per kg of dry salt. Both protein and triacylglycerides seem to arise from macro and microalgae, phytoplankton and cyanobacteria, due to their abundance and composition. Despite the variability resulting from saltpans surrounding environment, this PhD thesis allowed the identification of a sea salt characteristic organic compounds profile based on volatile compounds, polysaccharides, protein, and triacylglycerides.
Resumo:
Sulfated polysaccharides derived from seaweed have shown great potential for use in the development of new drugs. In this study, we observed that a low-molecular-weight sulfated polysaccharide from Caulerpa racemosa, termed CrSP, could interact with secretory phospholipase A2 (sPLA2) isolated from Crotalus durissus terrificus venom. When native sPLA2 (14 kDa) was incubated with CrSP, they formed a molecular complex (sPLA2:CrSP) with a molecular mass of 32 kDa, approximately. Size exclusion chromatography experiments suggested that CrSP formed a stable complex with sPLA2. We belived that sPLA2 and SPCr are involved an ionic interaction between negatively charged CrSP and the positively charged basic amino acid residues of sPLA2, because this interaction induced significant changes in sPLA2 enzymatic and pharmacological activities. CrSP caused a significant increase in sPLA2 enzymatic and bactericidal activity and increased its edematogenic effect. A pharmacological assay showed that the myotoxic activity of sPLA2:CrSP is unrelated to its enzymatic activity and that sPLA2:CrSP may have a practical application as a natural antibacterial agent for use in humans and commercially raised animals.
Resumo:
Para formar metástases, as células tumorais devem se desprender do tumor primário e migrar através do endotélio num processo denominado intravasamento. Uma vez na circulação, elas devem aderir ao endotélio do tecido alvo e extravasar para o novo sítio de colonização, onde irão proliferar. A interação das células tumorais com o endotélio é mediada por selectinas, seguida pela interação com integrinas. As células tumorais apresentam um padrão anormal de glicosilação, expressando ligantes de selectinas, formados por polissacarídeos fucosilados, como sialyl Lewis a/x. Durante o processo metastático, células tumorais secretam diversos fatores de crescimento. Além de modular diferentes tipos celulares que constituem o microambiente tumoral, estes fatores de crescimento também atuam nas células tumorais de forma autócrina, ativando vias de sinalização envolvidas na proliferação e migração celular. Polissacarídeos sulfatados como a heparina, podem atuar como inibidores de P e L-selectinas, além de se ligar a fatores de crescimento, impedindo a ativação de seus receptores. Neste trabalho, avaliamos o papel de fucanas sulfatadas extraídas de diferentes espécies de invertebrados marinhos (L. variegatus, S. franciscanus, S. pallidus, A. lixula e S. droebachiensis) na modulação da interação entre células tumorais com o endotélio in vitro e comparamos seu efeito com o da heparina. Também avaliamos o papel destas moléculas na proliferação de células tumorais. Para isso, utilizamos duas linhagens tumorais de próstata (DU-145 e PC-3) e culturas primárias de células endoteliais de veia umbilical humana (HUVECs). Ao avaliar o efeito das fucanas na adesão das células tumorais às HUVECs, observamos que todas as fucanas testadas inibiram a adesão da linhagem DU-145 à monocamada endotelial, enquanto apenas a fucana extraída da espécie L. variegatus (FucSulf I) e da espécie S. franciscanus inibiram a adesão da linhagem PC-3. A FucSulf I foi uma das fucanas que apresentou maior potencial inibitório nas duas linhagens e foi a única que inibiu a adesão da linhagem DU-145 à matriz subendotelial, não interferindo na adesão da linhagem PC-3. A FucSulf I mostrou-se capaz de diminuir também a migração transendotelial das linhagens tumorais DU-145 e PC-3. A heparina mostrou efeito significativo apenas nos ensaios de transmigração, inibindo este evento de forma similar a FucSuf I. Sabe-se que o VEGF aumenta a permeabilidade endotelial, facilitando a passagem de células tumorais através do vaso. Observamos que as duas linhagens secretam VEGF e que a FucSulf I se liga a este fator. Estes dados sugerem que a interação da FucSuf I com o VEGF pode impedir a ação deste fator nas células endoteliais, diminuindo a migração transendotelial das células tumorais testadas. Também verificamos que a FucSulf I inibiu a proliferação das linhagens celulares na ausência de fatores exógenos ou na presença de soro fetal bovino ou VEGF. Por fim, avaliamos que a FucSulf I interfere na ativação de proteínas específicas de vias de sinalização disparadas por fatores de crescimento. A FucSulf I inibe a ativação da AKT na linhagem PC-3, enquanto nas células DU-145 observamos uma inibição da ativação da ERK. Esses dados indicam que a FucSulf I modula diversas etapas da progressão tumoral e pode ser um potencial candidato para o uso em terapias antitumorais
Resumo:
There are several apparent developmental stages in the life cycle of Nostoc sphaeroides Kutzing, an edible cyanobacterium found mainly in paddy fields in central China. The cytochemical changes in developmental stages such as hormogonia, aseriate stage, filamentous stage and colony in N. sphaeroides were examined using fluorescent staining and colorimetric methods. The staining of acidic and sulfated polysaccharides increased with development when hormogonia were used as the starting point. Acidic polysaccharides (AP) were most abundant at the aseriate stage and then decreased, while the sulfated polysaccharides (SP) were highest at the colony stage. Quantitatively, along the developmental process from hormogonia to colony, total carbohydrates first increased, then became stable, and then reached their highest level at the colony stage, while reducing sugars were highest at the hormogonia stage and then decreased sharply once development began. SP were not detectable in the hot water soluble polysaccharides (HWSP), and hormogonia had the lowest content of AP, while old colonies had the highest. The AP content of the aseriate stage, filamentous stage and young colony stage were very similar. The evolutionary relationships reflected in the developmental stages of N. sphaeroides are discussed.
Resumo:
In old China there were very few people engaged in the study of the algae, but in new China, freshwater and marine algae are studied by over one hundred old and new phycologists. There is now an algal biotechnology industry consisting of an aquaculture industry, producing large amounts of the seaweeds Laminaria, Porphyra, Undaria, Gracilaria, eucheumoids, and the microalgae Dunaliella and Spirulina. There is also a phycocolloid industry, producing algin, agar and carrageenan; an industry producing chemicals and drugs, such as iodine, mannitol, phycocyanin, beta -carotene, PSS (propylene glycol alginate sulfate) and FPS (fucose-containing sulfated polysaccharides) and an industry producing food, feed and fertilizer. The Laminaria cultivation industry produces about 900,000 t dry Laminaria, probably the largest producer in the world and 13,000 t algin, undoubtedly one of the largest algin producer in the world.
Resumo:
The influence of molecular weight and substitution degree of sulfated polysaccharides on their biological activity is considered in majority of works involving the anticoagulant or antiviral properties of these substances. Therefore, the present paper describes the effect of preparation conditions of sulfated chitosans on their molecular weight and sulfur content, such as different reaction time, acid solvent and temperature. Foregoing literature expounded the action of dichloroacetic acid (DCAA) as acid solvent in homogeneous reaction. However, DCAA is expensive and noxious, therefore, in the present paper cheap and non-noxious formic acid (88%) was in place of DCAA. Furthermore, during reaction formic acid was not dehydrated. Under formic acid we obtained the satisfying results that was higher yield and equivalent sulfur contents compared to DCAA. IR and C-13 NMR spectrums proved the structure of the resultant obtained under formic acid or DCAA to be same. Now, it has not been reported for formic acid as acid solvent in homogeneous reaction of chitosan sulfatation. In this present paper, we also determined antioxidant activity of high-molecular weight and high-sulfate-content chitosans (HCTS). The results showed that HCTS could scavenge superoxide and hydroxyl radical. Its IC50 is 0.012 and 3.269 mg/mL, respectively. It had obviously reducing power and slight chelating activity. The data obtained in in vitro models clearly establish the antioxidant potency of HCTS. It is a potential antioxidant in vitro. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Since the first description of sulfated polysaccharides from seaweeds, the biological activities of these compounds have been evaluated under different aspects and experimental procedures. Among the broad biological activities presented by seaweed polysaccharides, anticoagulant action appears as a promising function. In this present study we have obtained sulfated polysaccharides from the green seaweed Codium isthmocladium by proteolytic digestion, followed by separation into five fractions (0.3, 0.5, 0.7, 0.9 and 1.2) by sequential acetone precipitation. The chemical analyses have demonstrated that all fractions are composed mainly by sulfated polysaccharides. The anticoagulant activity of these fractions was determined by activated partial thromboplastin time (aPTT) and prothrombin time test (PT) using citrate normal human plasma. None fraction has shown anticoagulant activity by PT test. Furthermore, all of them have shown anticoagulant activity by aPTT test. These results indicated that the molecular targets of these sulfated polysaccharides are mainly in the intrinsic via of the coagulation cascade. Agarose gel electrophoresis in 1,3-diaminopropane acetate buffer, pH 9.0, stained with 0.1% toluidine blue showed the presence of two or three bands in several fractions while the fraction 0.9 showed a single spot. By anion exchange chromatography, the acid polysaccharides from the 0.9 acetone fraction were separated into two new fractions eluted respectively with 2.0 and 3.0 M NaCl. These compounds showed a molecular weight of 6.4 and 7.4 kDa respectively. Chemical analyses and infrared spectroscopy showed that Gal 1 and Gal 2 are sulfated homogalactans and differ one from the other in degree and localization of sulfate groups. aPPT test demonstrated that fractions 2,0 and 3,0M (Gal1 and Gal 2, respectively) have anticoagulant activity. This is the first time that anticoagulant sulfated homogalatans have been isolated from green algae. To prolong the coagulation time to double the baseline value in the aPTT, the required amount of sulfated galactan 1 (6,3mg) was similar to low molecular heparin Clexane®, whereas only 0,7mg of sulfated galactan 2 was needed to obtain the same effect. Sulfated galactan 2 in high doses (250mg) induces platelet aggregation. These results suggest that these galactans from C. isthmocladum have a potential application as an anticoagulant drug
Resumo:
Sulfated polysaccharides (PS) are biomolecules with a great biotechnological potential. There are few data about PS from high plants. In addition, pharmacological activities of PS from plants have not been carrying out. The aim of this work was extract PS from the angiosperm Halodule wrightii and study their anticoagulant and antioxidant activities. Histological analysis showed the presence of the PS manly in the roots. A polysaccharide-rich extract was obtained from H. wrightii by proteolysis followed by methanol and TCA precipitation. Chemical, infra-red analysis and agarose gel electrophoresis in 1.3 diaminopropane acetate buffer confirmed the presence of sulfated polysaccharides made by glucose, galactose, xylose and sulfate residues in the proportion 1: 0,9: 1: 1. In addition polyacrilamide electrophoresis have shown that extract is mainly compose by 11kDa sulfated polysaccharides. Pharmacological analysis have shown total antioxidant capacity (CAT) that resulted in 15,21 μg for equivalent of ascorbic acid, scavenging activity of the DPPH radical with 41,36 % of scavenging, activity of reducing power with the maximum of 0,290 nm (50 % of vitamin C activity) and scavenging activity superoxide radical (O2-) with a maximum of 32,23 %. Chelating activity of metal less than 4% and scavenging activity of the radical hydroxyl (OH-) less than 2%. Time of activated partial tromboplastin (aPTT) doubling the time of coagulation from 20μg of and protrombin time (PT) was not present. The data indicate that PS from Halodule wrightii could be considered for future applications in medicine, food production or cosmetic industry
Resumo:
In recent years, sulfated polysaccharides (SP) from marine algae have emerged as an important class of natural biopolymers with potential pharmacology applications. Among these, SP isolated from the cell walls of red algae have been study due to their anticoagulant,antithrombotic and anti-inflammatory activities. In the present study, three sulfated polysaccharides fractions denominated F1.5v, F2.0v and F3.0v were obtained from seaweed G. caudate by proteolysis followed to acetone fractionation. Gel electrophoresis using 0.05 M 1,3-diaminopropane-acetate buffer, pH 9,0, stained with 0.1% toluidine blue, showed the presence of SP in all fractions. The chemical analysis demonstrated that all the fractions are composed mainly of galactose. These compounds were evaluated in anticoagulant, antioxidant and antiproliferative activities. In anticoagulant activity evaluated through aPTT and PT tests, no one fractions presented anticoagulant activity at tested concentrations (0.1 mg/mL; 1.0 mg/mL; 2.0 mg/mL).The antioxidant activities of the three fractions were evaluated by the following in vitro systems: Total antioxidant capacity, superoxide and hydroxyl radical scavenging, ferrous chelating activity and reducing power. The fractions were found to have different levels of antioxidant activity in the systems tested. F1.5v shows the highest activity, especially in the ferrous chelating system, with 70% of ferrous inhibiting at 1.0 mg.mL-1. Finally, all the fractions showed dose-dependent antiproliferative activity against HeLa cells. The fractions F1.5v and F2.0v presented the highest antiproliferative activity at 2.0 mg/mL with 42.7% and 37.0% of inhibition, respectively. Ours results suggests that the sulfated polysaccharides from seaweed G. caudata are promising compounds in antioxidant and/or antitumor therapy
Resumo:
Sulfated polysaccharides (PS) are biomolecules with a great biotechnological potential. There are few data about PS from high plants. In addition, pharmacological activities of PS from plants have not been carrying out. The aim of this work was extract PS from the angiosperm Halodule wrightii and study their anticoagulant and antioxidant activities. Histological analysis showed the presence of the PS manly in the roots. A polysaccharide-rich extract was obtained from H. wrightii by proteolysis followed by methanol and TCA precipitation. Chemical, infra-red analysis and agarose gel electrophoresis in 1.3 diaminopropane acetate buffer confirmed the presence of sulfated polysaccharides made by glucose, galactose, xylose and sulfate residues in the proportion 1: 0,9: 1: 1. In addition polyacrilamide electrophoresis have shown that extract is mainly compose by 11kDa sulfated polysaccharides. Pharmacological analysis have shown total antioxidant capacity (CAT) that resulted in 15,21 μg for equivalent of ascorbic acid, scavenging activity of the DPPH radical with 41,36 % of scavenging, activity of reducing power with the maximum of 0,290 nm (50 % of vitamin C activity) and scavenging activity superoxide radical (O2-) with a maximum of 32,23 %. Chelating activity of metal less than 4% and scavenging activity of the radical hydroxyl (OH-) less than 2%. Time of activated partial tromboplastin (aPTT) doubling the time of coagulation from 20μg of and protrombin time (PT) was not present. The data indicate that PS from Halodule wrightii could be considered for future applications in medicine, food production or cosmetic industry