6 resultados para subtransmission
Resumo:
In this paper a combined subtransmission and distribution reliability analysis of SEQEB’s outer suburban network is presented. The reliability analysis was carried out with a commercial software package which evaluates both energy and customer indices. Various reinforcement options were investigated to ascertain the impact they have on the reliability of supply seen by the customers. The customer and energy indices produced by the combined subtransmission and distribution reliability studies contributed to optimise capital expenditure to the most effective areas of the network.
Resumo:
The usual programs for load flow calculation were in general developped aiming the simulation of electric energy transmission, subtransmission and distribution systems. However, the mathematical methods and algorithms used by the formulations were based, in majority, just on the characteristics of the transmittion systems, which were the main concern focus of engineers and researchers. Though, the physical characteristics of these systems are quite different from the distribution ones. In the transmission systems, the voltage levels are high and the lines are generally very long. These aspects contribute the capacitive and inductive effects that appear in the system to have a considerable influence in the values of the interest quantities, reason why they should be taken into consideration. Still in the transmission systems, the loads have a macro nature, as for example, cities, neiborhoods, or big industries. These loads are, generally, practically balanced, what reduces the necessity of utilization of three-phase methodology for the load flow calculation. Distribution systems, on the other hand, present different characteristics: the voltage levels are small in comparison to the transmission ones. This almost annul the capacitive effects of the lines. The loads are, in this case, transformers, in whose secondaries are connected small consumers, in a sort of times, mono-phase ones, so that the probability of finding an unbalanced circuit is high. This way, the utilization of three-phase methodologies assumes an important dimension. Besides, equipments like voltage regulators, that use simultaneously the concepts of phase and line voltage in their functioning, need a three-phase methodology, in order to allow the simulation of their real behavior. For the exposed reasons, initially was developped, in the scope of this work, a method for three-phase load flow calculation in order to simulate the steady-state behaviour of distribution systems. Aiming to achieve this goal, the Power Summation Algorithm was used, as a base for developing the three phase method. This algorithm was already widely tested and approved by researchers and engineers in the simulation of radial electric energy distribution systems, mainly for single-phase representation. By our formulation, lines are modeled in three-phase circuits, considering the magnetic coupling between the phases; but the earth effect is considered through the Carson reduction. It s important to point out that, in spite of the loads being normally connected to the transformer s secondaries, was considered the hypothesis of existence of star or delta loads connected to the primary circuit. To perform the simulation of voltage regulators, a new model was utilized, allowing the simulation of various types of configurations, according to their real functioning. Finally, was considered the possibility of representation of switches with current measuring in various points of the feeder. The loads are adjusted during the iteractive process, in order to match the current in each switch, converging to the measured value specified by the input data. In a second stage of the work, sensibility parameters were derived taking as base the described load flow, with the objective of suporting further optimization processes. This parameters are found by calculating of the partial derivatives of a variable in respect to another, in general, voltages, losses and reactive powers. After describing the calculation of the sensibility parameters, the Gradient Method was presented, using these parameters to optimize an objective function, that will be defined for each type of study. The first one refers to the reduction of technical losses in a medium voltage feeder, through the installation of capacitor banks; the second one refers to the problem of correction of voltage profile, through the instalation of capacitor banks or voltage regulators. In case of the losses reduction will be considered, as objective function, the sum of the losses in all the parts of the system. To the correction of the voltage profile, the objective function will be the sum of the square voltage deviations in each node, in respect to the rated voltage. In the end of the work, results of application of the described methods in some feeders are presented, aiming to give insight about their performance and acuity
Resumo:
The usual programs for load flow calculation were in general developped aiming the simulation of electric energy transmission, subtransmission and distribution systems. However, the mathematical methods and algorithms used by the formulations were based, in majority, just on the characteristics of the transmittion systems, which were the main concern focus of engineers and researchers. Though, the physical characteristics of these systems are quite different from the distribution ones. In the transmission systems, the voltage levels are high and the lines are generally very long. These aspects contribute the capacitive and inductive effects that appear in the system to have a considerable influence in the values of the interest quantities, reason why they should be taken into consideration. Still in the transmission systems, the loads have a macro nature, as for example, cities, neiborhoods, or big industries. These loads are, generally, practically balanced, what reduces the necessity of utilization of three-phase methodology for the load flow calculation. Distribution systems, on the other hand, present different characteristics: the voltage levels are small in comparison to the transmission ones. This almost annul the capacitive effects of the lines. The loads are, in this case, transformers, in whose secondaries are connected small consumers, in a sort of times, mono-phase ones, so that the probability of finding an unbalanced circuit is high. This way, the utilization of three-phase methodologies assumes an important dimension. Besides, equipments like voltage regulators, that use simultaneously the concepts of phase and line voltage in their functioning, need a three-phase methodology, in order to allow the simulation of their real behavior. For the exposed reasons, initially was developped, in the scope of this work, a method for three-phase load flow calculation in order to simulate the steady-state behaviour of distribution systems. Aiming to achieve this goal, the Power Summation Algorithm was used, as a base for developping the three phase method. This algorithm was already widely tested and approved by researchers and engineers in the simulation of radial electric energy distribution systems, mainly for single-phase representation. By our formulation, lines are modeled in three-phase circuits, considering the magnetic coupling between the phases; but the earth effect is considered through the Carson reduction. Its important to point out that, in spite of the loads being normally connected to the transformers secondaries, was considered the hypothesis of existence of star or delta loads connected to the primary circuit. To perform the simulation of voltage regulators, a new model was utilized, allowing the simulation of various types of configurations, according to their real functioning. Finally, was considered the possibility of representation of switches with current measuring in various points of the feeder. The loads are adjusted during the iteractive process, in order to match the current in each switch, converging to the measured value specified by the input data. In a second stage of the work, sensibility parameters were derived taking as base the described load flow, with the objective of suporting further optimization processes. This parameters are found by calculating of the partial derivatives of a variable in respect to another, in general, voltages, losses and reactive powers. After describing the calculation of the sensibility parameters, the Gradient Method was presented, using these parameters to optimize an objective function, that will be defined for each type of study. The first one refers to the reduction of technical losses in a medium voltage feeder, through the installation of capacitor banks; the second one refers to the problem of correction of voltage profile, through the instalation of capacitor banks or voltage regulators. In case of the losses reduction will be considered, as objective function, the sum of the losses in all the parts of the system. To the correction of the voltage profile, the objective function will be the sum of the square voltage deviations in each node, in respect to the rated voltage. In the end of the work, results of application of the described methods in some feeders are presented, aiming to give insight about their performance and acuity
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O trabalho em questão apresenta uma proposta do suprimento de energia elétrica de um alimentador de distribuição pela operação isolada de uma usina geradora de energia elétrica que utiliza como fonte primária a energia calorífica da incineração de resíduos sólidos urbanos. O suprimento proposto é sugerido após a constatação do esgotamento da capacidade da subestação supridora desse alimentador. O esgotamento é verificado a partir de simulações realizadas no sistema de distribuição real da Rede Celpa, localizado na região Nordeste do Estado do Pará, o qual atende os municípios Santa Izabel do Pará, Santo Antonio do Tauá, Colares, Vigia e São Caetano de Odivelas. Nas simulações é utilizado um programa de fluxo de carga desenvolvido especificamente para os sistemas radias de distribuição e da subtransmissão. A proposta de suprimento via geração de energia elétrica através da incineração dos resíduos sólidos urbanos se dá a partir do confronto entre as alternativas de expansão (a alternativa técnica normalmente praticada pela concessionária) e a alternativa técnica-econômica-ambiental sugerida neste trabalho que demonstra as vantagens econômicas, sociais e ambientais da proposta.
Resumo:
Protective relaying comprehends several procedures and techniques focused on maintaining the power system working safely during and after undesired and abnormal network conditions, mostly caused by faulty events. Overcurrent relay is one of the oldest protective relays, its operation principle is straightforward: when the measured current is greater than a specified magnitude the protection trips; less variables are required from the system in comparison with other protections, causing the overcurrent relay to be the simplest and also the most difficult protection to coordinate; its simplicity is reflected in low implementation, operation, and maintenance cost. The counterpart consists in the increased tripping times offered by this kind of relays mostly before faults located far from their location; this problem can be particularly accentuated when standardized inverse-time curves are used or when only maximum faults are considered to carry out relay coordination. These limitations have caused overcurrent relay to be slowly relegated and replaced by more sophisticated protection principles, it is still widely applied in subtransmission, distribution, and industrial systems. In this work, the use of non standardized inverse-time curves, the model and implementation of optimization algorithms capable to carry out the coordination process, the use of different levels of short circuit currents, and the inclusion of distance relays to replace insensitive overcurrent ones are proposed methodologies focused on the overcurrent relay performance improvement. These techniques may transform the typical overcurrent relay into a more sophisticated one without changing its fundamental principles and advantages. Consequently a more secure and still economical alternative can be obtained, increasing its implementation area