901 resultados para student response systems
Resumo:
These PowerPoint slides supported an ILIaD workshop in September 2016.
Resumo:
Student response systems (SRS) are hand-held devices or mobile phone polling systems which collate real-time, individual responses to on-screen questions. Previous research examining their role in higher education has highlighted both advantages and disadvantages of their use. This paper explores how different SRS influence the learning experience of psychology students across different levels of their programme. Across two studies, first year students’ experience of using Turningpoint clickers and second year students’ experience of using Poll Everywhere was investigated. Evaluations of both studies revealed that SRS has a number of positive impacts on learning, including enhanced engagement, active learning, peer interaction, and formative feedback. Technical and practical issues emerged as consistent barriers to the use of SRS. Discussion of these findings and the authors’ collective experiences of these technologies are used to provide insight into the way in which SRS can be effectively integrated within undergraduate psychology programmes.
Resumo:
The goal of this project was to initiate the use of an internet-based student response system in a large, first year chemistry class at a typical Australian university, and to verify its popularity and utility. A secondary goal was to influence other academic staff to adopt the system, initiating change at the discipline and Faculty level. The first goal was achieved with a high response rate using a commercial on-line system; however, the number of students engaging with the system dropped gradually during each class and over the course of the semester. Factors affecting student and staff adoption and continuance with technology are explored using established models.
Resumo:
There is currently a wide range of research into the recent introduction of student response systems in higher education and tertiary settings (Banks 2006; Kay and Le Sange, 2009; Beatty and Gerace 2009; Lantz 2010; Sprague and Dahl 2009). However, most of this pedagogical literature has generated ‘how to’ approaches regarding the use of ‘clickers’, keypads, and similar response technologies. There are currently no systematic reviews on the effectiveness of ‘GoSoapBox’ – a more recent, and increasingly popular student response system – for its capacity to enhance critical thinking, and achieve sustained learning outcomes. With rapid developments in teaching and learning technologies across all undergraduate disciplines, there is a need to obtain comprehensive, evidence-based advice on these types of technologies, their uses, and overall efficacy. This paper addresses this current gap in knowledge. Our teaching team, in an undergraduate Sociology and Public Health unit at the Queensland University of Technology (QUT), introduced GoSoapBox as a mechanism for discussing controversial topics, such as sexuality, gender, economics, religion, and politics during lectures, and to take opinion polls on social and cultural issues affecting human health. We also used this new teaching technology to allow students to interact with each other during class – both on both social and academic topics – and to generate discussions and debates during lectures. The paper reports on a data-driven study into how this interactive online tool worked to improve engagement and the quality of academic work produced by students. This paper will firstly, cover the recent literature reviewing student response systems in tertiary settings. Secondly, it will outline the theoretical framework used to generate this pedagogical research. In keeping with the social and collaborative features of Web 2.0 technologies, Bandura’s Social Learning Theory (SLT) will be applied here to investigate the effectiveness of GoSoapBox as an online tool for improving learning experiences and the quality of academic output by students. Bandura has emphasised the Internet as a tool for ‘self-controlled learning’ (Bandura 2001), as it provides the education sector with an opportunity to reconceptualise the relationship between learning and thinking (Glassman & Kang 2011). Thirdly, we describe the methods used to implement the use of GoSoapBox in our lectures and tutorials, and which aspects of the technology we drew on for learning purposes, as well as the methods for obtaining feedback from the students about the effectiveness or otherwise of this tool. Fourthly, we report cover findings from an examination of all student/staff activity on GoSoapBox as well as reports from students about the benefits and limitations of it as a learning aid. We then display a theoretical model that is produced via an iterative analytical process between SLT and our data analysis for use by academics and teachers across the undergraduate curriculum. The model has implications for all teachers considering the use of student response systems to improve the learning experiences of their students. Finally, we consider some of the negative aspects of GoSoapBox as a learning aid.
Resumo:
There is a dearth of evidence focusing on student preferences for computer-based testing versus
testing via student response systems for summative assessment in undergraduate education.
This quantitative study compared the preference and acceptability of computer-based testing
and a student response system for completing multiple choice questions in undergraduate
nursing education. After using both computer-based testing and a student response system to
complete multiple choice questions, 192 first year undergraduate nursing students rated their
preferences and attitudes towards using computer-based testing and a student response system.
Results indicated that seventy four percent felt the student response system was easy to use.
Fifty six percent felt the student response system took more time than the computer-based testing
to become familiar with. Sixty Percent felt computer-based testing was more users friendly.
Seventy Percent of students would prefer to take a multiple choice question summative exam
via computer-based testing, although Fifty percent would be happy to take using student response
system. Results are useful for undergraduate educators in relation to student’s preference
for using computer-based testing or student response system to undertake a summative
multiple choice question exam
Resumo:
A growing body of research in higher education suggests that teachers should move away from traditional lecturing towards more active and student-focus education approaches. Several classroom techniques are available to engage students and achieve more effective teaching and better learning experiences. The purpose of this paper is to share an example of how two of them – case-based teaching, and the use of response technologies – were implemented into a graduate-level food science course. The paper focuses in particular on teaching sensory science and sensometrics, including several concrete examples used during the course, and discussing in each case some of the observed outcomes. Overall, it was observed that the particular initiatives were effective in engaging student participation and promoting a more active way of learning. Case-base teaching provided students with the opportunity to apply their knowledge and their analytical skills to complex, real-life scenarios relevant to the subject matter. The use of audience response systems further facilitated class discussion, and was extremely well received by the students, providing a more enjoyable classroom experience.
Resumo:
Background At Queensland University of Technology (QUT), the Bachelor of Radiation Therapy course evaluation has previously suffered from low online survey participation rates. A communal instantaneous feedback event using an audience response system (ARS) was evaluated as a potential solution to this problem. The aims of the project were to determine the extent to which this feedback event could be facilitated by ARS technology and to evaluate the impact the technology made on student satisfaction and engagement. Methods Students were invited to a timetabled session to provide feedback on individual study units and the course overall. They provided quantitative Likert-style responses to prompts for each unit and the course using an ARS as well as anonymous typed qualitative comments. Data collection was performed live so students were able to view collective class responses. This prompted further discussion and enabled a prospective action plan to be developed. To inform future ARS use, students were asked for their opinions on the feedback method. Results Despite technological difficulties, student evaluation indicated that all responders enjoyed the session and the opportunity to view the combined responses. All students felt that useful feedback was generated and that this method should be used in the future. The student attendance and response rates were high, and it was clear that the session had led to the development of some insightful qualitative feedback comments. Conclusions: An ARS contributed well to the collection of course feedback in a communal and interactive environment. Students found it enjoyable to use, and it helped to stimulate useful qualitative comments
Resumo:
The use of audience response systems (ARSs) or ‘clickers’ in higher education has increased over the recent years, predominantly owing to their ability to actively engage students, for promoting individual and group learning, and for providing instantaneous feedback to students and teachers. This paper describes how group-basedARSquizzes have been integrated into an undergraduate civil engineering course on foundation design. Overall, theARSsummary quizzes were very well received by the students. Feedback obtained from the students indicates that the majority believed the group-based quizzes were useful activities, which helped to improve their understanding of course materials, encouraged self-assessment, and assisted preparation for their summative examination. Providing students with clickers does not, however, necessarily guarantee the class will be engaged with the activity. If an ARS activity is to be successful, careful planning and design must be carried out and modifications adopted where necessary, which should be informed by the literature and relevant student feedback.
Resumo:
The dynamic interplay between existing learning frameworks: people, pedagogy, learning spaces and technology is challenging the traditional lecture. A paradigm is emerging from the correlation of change amongst these elements, offering new possibilities for improving the quality of the learning experience. For many universities, the design of physical learning spaces has been the focal point for blending technology and flexible learning spaces to promote learning and teaching. As the pace of technological change intensifies, affording new opportunities for engaging learners, pedagogical practice in higher education is not comparatively evolving. The resulting disparity is an opportunity for the reconsideration of pedagogical practice for increased student engagement in physical learning spaces as an opportunity for active learning. This interplay between students, staff and technology is challenging the value for students in attending physical learning spaces such as the traditional lecture. Why should students attend for classes devoted to content delivery when streaming and web technologies afford more flexible learning opportunities? Should we still lecture? Reconsideration of pedagogy is driving learning design at Queensland University of Technology, seeking new approaches affording increased student engagement via active learning experiences within large lectures. This paper provides an overview and an evaluation of one of these initiatives, Open Web Lecture (OWL), an experimental web based student response application developed by Queensland University of Technology. OWL seamlessly integrates a virtual learning environment within physical learning spaces, fostering active learning opportunities. This paper will evaluate the pilot of this initiative through consideration of effectiveness in increasing student engagement through the affordance of web enabled active learning opportunities in physical learning spaces.
Resumo:
The dynamic interplay between existing learning frameworks: people, pedagogy, learning spaces and technology is challenging the traditional lecture. A paradigm is emerging from the correlation of change amongst these elements, offering new possibilities for improving the quality of the learning experience. For many universities, the design of physical learning spaces has been the focal point for blending technology and flexible learning spaces to promote learning and teaching. As the pace of technological change intensifies, affording new opportunities for engaging learners, pedagogical practice in higher education is not comparatively evolving. The resulting disparity is an opportunity for the reconsideration of pedagogical practice for increased student engagement in physical learning spaces as an opportunity for active learning. This interplay between students, staff and technology is challenging the value for students in attending physical learning spaces such as the traditional lecture. Why should students attend for classes devoted to content delivery when streaming and web technologies afford more flexible learning opportunities? Should we still lecture? Reconsideration of pedagogy is driving learning design at Queensland University of Technology, seeking new approaches affording increased student engagement via active learning experiences within large lectures. This paper provides an overview and an evaluation of one of these initiatives, Open Web Lecture (OWL), an experimental web based student response application developed by Queensland University of Technology. OWL seamlessly integrates a virtual learning environment within physical learning spaces, fostering active learning opportunities. This paper will evaluate the pilot of this initiative through consideration of effectiveness in increasing student engagement through the affordance of web enabled active learning opportunities in physical learning spaces.
Resumo:
It is imperative that we consider the use of current and emerging technologies in terms of the nature of our learners, the physical environment of the lecture theatre, and how technology may help to support appropriate pedagogies that facilitate the capturing of student attention in active engaging learning experiences. It is argued that a re-evaluation of pedagogy is required to address the tech-savy traits of the 21st century learner and the extent to which their mobile devices are capable of not only distracting them from learning but also enhancing face-to-face learning experiences.
Resumo:
In recent times, higher education institutions have paid increasing attention to the views of students to obtain feedback on their experience of learning and teaching through internal surveys. This article reviews research in the field and reports on practices in other Australian universities. Findings demonstrate that while student feedback is valued and used by all Australian universities, survey practices are idiosyncratic and in the majority of cases, questionnaires lack validity and reliability; data are used inadequately or inappropriately; and they offer limited potential for cross-sector benchmarking. The study confirms the need for institutions to develop an overarching framework for evaluation in which a valid, reliable, multidimensional and useful student feedback survey constitutes just one part. Given external expectations and internal requirements to collect feedback from students on their experience of learning and teaching, the pursuit of sound evaluation practices will continue to be of interest at local, national and international levels.
Resumo:
The proliferation of smartphones and other internet-enabled, sensor-equipped consumer devices enables us to sense and act upon the physical environment in unprecedented ways. This thesis considers Community Sense-and-Response (CSR) systems, a new class of web application for acting on sensory data gathered from participants' personal smart devices. The thesis describes how rare events can be reliably detected using a decentralized anomaly detection architecture that performs client-side anomaly detection and server-side event detection. After analyzing this decentralized anomaly detection approach, the thesis describes how weak but spatially structured events can be detected, despite significant noise, when the events have a sparse representation in an alternative basis. Finally, the thesis describes how the statistical models needed for client-side anomaly detection may be learned efficiently, using limited space, via coresets.
The Caltech Community Seismic Network (CSN) is a prototypical example of a CSR system that harnesses accelerometers in volunteers' smartphones and consumer electronics. Using CSN, this thesis presents the systems and algorithmic techniques to design, build and evaluate a scalable network for real-time awareness of spatial phenomena such as dangerous earthquakes.
Resumo:
Background Rapid Response Systems (RRS) consist of four interrelated and interdependent components; an event detection and trigger mechanism, a response strategy, a governance structure and process improvement system. These multiple components of the RRS pose problems in evaluation as the intervention is complex and cannot be evaluated using a traditional systematic review. Complex interventions in healthcare aimed at changing service delivery and related behaviour of health professionals require a different approach to summarising the evidence. Realist synthesis is such an approach to reviewing research evidence on complex interventions to provide an explanatory analysis of how and why an intervention works or doesn’t work in practice. The core principle is to make explicit the underlying assumptions about how an intervention is suppose to work (ie programme theory) and then use this theory to guide evaluation. Methods A realist synthesis process was used to explain those factors that enable or constrain the success of RRS programmes. Results The findings from the review include the articulation of the RRS programme theories, evaluation of whether these theories are supported or refuted by the research evidence and an evaluation of evidence to explain the underlying reasons why RRS works or doesn’t work in practice. Rival conjectured RRS programme theories were identified to explain the constraining factors regarding implementation of RRS in practice. These programme theories are presented using a logic model to highlight all the components which impact or influence the delivery of RRS programmes in the practice setting. The evidence from the realist synthesis provided the foundation for the development of hypothesis to test and refine the theories in the subsequent stages of the Realist Evaluation PhD study [1]. This information will be useful in providing evidence and direction for strategic and service planning of acute care to improve patient safety in hospital. References: McGaughey J, Blackwood B, O’Halloran P, Trinder T. J. & Porter S. (2010) Realistic Evaluation of Early Warning Systems and the Acute Life-threatening Events – Recognition and Treatment training course for early recognition and management of deteriorating ward-based patients: research protocol. Journal of Advanced Nursing 66 (4), 923-932.