998 resultados para structural relaxation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a liquid is progressively supercooled toward its glass transition temperature, an intriguing weakening of the wavenumber (q) dependence of the structural relaxation time tau(q) in the intermediate-to-large q limit is observed both in experiments and simulation studies. Neither continuous Brownian diffusive dynamics nor discontinuous activated events can alone explain the anomalous wavenumber dependence. Here we use our recently developed theory that unifies the mode coupling theory for continuous dynamics, with the random first order transition theory treatment of activated discontinuous motion as a nucleationlike instanton process to understand the wavenumber dependence of density relaxation. The predicted smooth change in mechanism of relaxation from diffusive to activated, in the crossover regime, is wavevector dependent and appears to be responsible for the observed subquadratic,nalmost linear, q dependence of the relaxation time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stability of a Pd40Cu30Ni10P20 bulk metallic glass (BMG) against structural relaxation is investigated by isothermal and isochronal annealing heat treatments below and above its glass transition temperature, Tg, for varying periods. Differential scanning calorimetry (DSC) of the annealed samples shows an excess endotherm at Tg, irrespective of the annealing temperature. This recovery peak evolves exponentially with annealing time and is due to the destruction of anneal-induced compositional short range ordering. The alloy exhibits a high resistance to crystallization on annealing below Tg and complex Pd- and Ni-phosphides evolve on annealing above Tg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural relaxation through isothermal annealing at tempertature below glass transition is conducted on Zr46.75Ti8.25Cu7.5Ni10Be27.5 (Vitreloy-4) bulk metallic glass. Defect concentration is correlated with the annealing time t according to differential scanning calorimetry thermalgrams. The effects of structural relaxation on mechanical properties and deformation behaviour are investigated by using instrumented nanoindentation. It is found that as-cast alloy exhibits pronounced serration flow during the loading process of nanoindentation, and the size and number of serrations decrease with the annealing time. The change of the deformation behaviour with structural relaxation is explained using a free volume model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural relaxation by isothermal annealing below the glass transition temperature is conducted on a Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass. The effect of structural relaxation on thermal and mechanical properties was investigated by differential scanning calorimetry and instrumented nanoindentation. The recovery of the enthalpy in the DSC curves indicates that thermally unstable defects were annihilated through structural relaxation. During nanoindentation, the structural relaxation did not have a significant influence on the serrated plastic flow behavior. However, Structural relaxation shows an obvious effect in increasing both the hardness and elastic modulus, which is attributed to the annihilation of thermally unstable defects that resulted from the relaxation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural relaxation by isothermal annealing below the glass transition temperature is conducted on a Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass. The effect of structural relaxation on thermal and mechanical properties was investigated by differential scanning calorimetry and instrumented nanoindentation. The recovery of the enthalpy in the DSC curves indicates that thermally unstable defects were annihilated through structural relaxation. During nanoindentation, the structural relaxation did not have a significant influence on the serrated plastic flow behavior. However, Structural relaxation shows an obvious effect in increasing both the hardness and elastic modulus, which is attributed to the annihilation of thermally unstable defects that resulted from the relaxation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of entanglements on the glass transition and structural relaxation behaviors has been studied for polystyrene (PS) and phenolphthalein poly(ether sulfone) (PES-C) samples by fast evaporation of the solution of concentrations varying from above the overlapping concentration to far below it, and compared to the results we have studied previously in PC. It has been found that for all the polymers we have studied, in the concentrated solution region, the T-g of the samples obtained from solution are independent of the change of concentration and are very close to that of normal bulk samples, whereas in the dilute solution region the T-g of the samples decrease with the logarithm of decreasing concentration. The critical concentrations that divide the two distinct regions for the three polymers are 0.9% g/mL for PC, 0.1% g/mL for PS, and 1% g/mL for PES-C. The decrease of T-g of the samples is interpreted by the decrease of intermolecular entanglements as the isolation of polymer chains, and the entanglement of polymer chains restrained the mobility of the segments. The structural relaxation behavior of the polymers is also found to be different from that of normal bulk samples. The enthalpies of single-chain samples are lower than that of the bulk ones, which correspond to the lower glass transition temperature; the peaks are lower and broader, and the relaxed enthalpy is much lower as compared to that of bulk samples. In the three polymers we have studied, the influence of change of entanglements on both the decrease in glass transition temperature and relaxed enthalpy is the most significant for PS and the least for PES-C. It is indicated that the interactions in the flexible polymers are weak; thus, the restraint of the entanglements on the mobility of the segments plays a more important role in the flexible polymers, and the change of entanglement in the flexible polymers has a more significant influence on the physical properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We obtained the single-chain polycarbonate sample, by a new fast evaporation method and found that the polycarbonate sample obtained by this method is completely amorphous, while the polycarbonate sample obtained by other methods all have a certain degree of crystallinity. The glass transition temperature (T-g) of the sample decreases with the decreasing of concentration when the concentration of the prepared solution is below the critical value. The critical concentration we obtained from the T-g dependence of concentration is 0.9% g/mL and is in accord with that obtained by viscometry and light scattering methods directly from the solution. The structural relaxation behavior is found also different from that of a normal bulk sample of polycarbonate. The enthalpic peak of the single-chain sample is lower: than that of the bulk one, which corresponds to the lower glass transition temperature. The peak of the single-chain sample is lower and broader, and the relaxed enthalpy is much lower compared with that of the bulk sample. These results have been explained in terms of the effect of entanglement on the mobility of the segments in polymer and the compact conformation in the single-chain sample.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural relaxation process of an inorganic glass (Li(2)O2SiO(2)) at different cooling rates has been studied by differential scanning calorimetry. A four-parameter model-Tool-Narayanaswamy-Moynihan (TNM) model was applied to simulate the normalized specific heat curve measured. Four parameters, Delta h*/R, beta, In A, and x were obtained and compared with the values obtained from the isothermal approach. (C) 1999 Kluwer Academic Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural relaxation process of an inorganic glass (Li(2)O2SiO(2)) has been studied by differential scanning calorimetry. The sample is subjected to different thermal ageing histories with isothermal stages at an ageing temperature of T-g - 30 degrees C for different ageing times and at an ageing time of 16 h for different ageing temperatures. A four-parameter Tool-Narayanaswamy-Moynihan (TNM) model, is applied to simulate the normalized specific-heat curves measured. The ageing-temperature and ageing-time dependence of the structural relaxation parameters in the TNM model is obtained. (C) 1998 Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main characteristics of structural relaxation and the associated Tool-Narayanaswamy-Moynihan (TNM) model are thoroughly introduced, The structural relaxation of an inorganic glass (Li2O . 2SiO(2)) at different aging temperatures and aging times is found to be well modeled by the TNM model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ceria (CeO2) and ceria-based composite materials, especially Ce1-xZrxO2 solid solutions, possess a wide range of applications in many important catalytic processes, such as three-way catalysts, owing to their excellent oxygen storage capacity (OSC) through the oxygen vacancy formation and refilling. Much of this activity has focused on the understanding of the electronic and structural properties of defective CeO2 with and without doping, and comprehending the determining factor for oxygen vacancy formation and the rule to tune the formation energy by doping has constituted a central issue in material chemistry related to ceria. However, the calculation on electronic structures and the corresponding relaxation patterns in defective CeO2-x oxides remains at present a challenge in the DFT framework. A pragmatic approach based on density functional theory with the inclusion of on-site Coulomb correction, i.e. the so-called DFT + U technique, has been extensively applied in the majority of recent theoretical investigations. Firstly, we review briefly the latest electronic structure calculations of defective CeO2(111), focusing on the phenomenon of multiple configurations of the localized 4f electrons, as well as the discussions of its formation mechanism and the catalytic role in activating the O-2 molecule. Secondly, aiming at shedding light on the doping effect on tuning the oxygen vacancy formation in ceria-based solid solutions, we summarize the recent theoretical results of Ce1-xZrxO2 solid solutions in terms of the effect of dopant concentrations and crystal phases. A general model on O vacancy formation is also discussed; it consists of electrostatic and structural relaxation terms, and the vital role of the later is emphasized. Particularly, we discuss the crucial role of the localized structural relaxation patterns in determining the superb oxygen storage capacity in kappa-phase Ce1-xZr1-xO2. Thirdly, we briefly discuss some interesting findings for the oxygen vacancy formation in pure ceria nanoparticles (NPs) uncovered by DFT calculations and compare those with the bulk or extended surfaces of ceria as well as different particle sizes, emphasizing the role of the electrostatic field in determining the O vacancy formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using density functional theory with the inclusion of on-site Coulomb Correction, the O vacancy formation energies of CexZr1-xO2 solid solutions with a series of Ce/Zr ratios are calculated, and a model to understand the results is proposed. It consists of electrostatic and structural relaxation terms, and the latter is found to play a vital role in affecting the O vacancy formation energies. Using this model, several long-standing questions in the field, such as why ceria with 50% ZrO2 usually exhibit the best oxygen storage capacity, can be explained. Some implications of the new interpretation are also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structural relaxation process of an inorganic glass (Li2O . 2SiO(2)) at an ageing temperature of 703 K for an ageing time of 1 h has been studied by differential scanning calorimetry. A four-parameter model-the Tool-Narayanaswamy-Moynihan (TNM)-model was applied to simulate the normalized specific heat curve measured. A set of optimized parameters, Delta h*/R,beta,InA, and x was obtained. Then the effects of variation of each adjustable parameter on the calculated specific heat were summarized. (C) 1997 Elsevier Science S.A.