988 resultados para stromal cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surgical treatment for enterocutaneous fistulas (EF) frequently fails. Cell therapy may represent a new approach to treatment. Mesenchymal stromal cells (MSCs) have high proliferative and differentiation capacity. This study aimed to investigate whether MSCs could adhere to suture filament (SF), promoting better EF healing. MSCs, 1 × 10(6), from adipose tissue (ATMSCs) were adhered to a Polyvicryl SF by adding a specific fibrin glue formulation. Adhesion was confirmed by confocal and scanning electron microscopy (SEM). A cecal fistula was created in 22 Wistar rats by incising the cecum and suturing the opening to the surgical wound subcutaneously with four separate stitches. The animals were randomly allocated to three groups: control (CG)-five animals, EF performed; injection (IG)-eight animals 1 × 10(6) ATMSCs injected around EF borders; and suture filament (SG): nine animals, sutured with 1 × 10(6) ATMSCs attached to the filaments with fibrin glue. Fistulas were photographed on the operation day and every 3 days until the 21st day and analyzed by two observers using ImageJ Software. Confocal and SEM results demonstrated ATMSCs adhered to SF (ATMSCs-SF). The average reduction size of the fistula area at 21st day was greater for the SG group (90.34%, P < 0.05) than the IG (71.80%) and CG (46.54%) groups. ATMSCs adhered to SF maintain viability and proliferative capacity. EF submitted to ATMSCs-SF procedure showed greater recovery and healing. This approach might be a new and effective tool for EF treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The association between tridimensional scaffolds to cells of interest has provided excellent perspectives for obtaining viable complex tissues in vitro, such as skin, resulting in impressive advances in the field of tissue engineering applied to regenerative therapies. The use of multipotent mesenchymal stromal cells in the treatment of dermo-epidermal wounds is particularly promising due to several relevant properties of these cells, such as high capacity of proliferation in culture, potential of differentiation in multiple skin cell types, important paracrine and immunomodulatory effects, among others. Membranes of chitosan complexed with xanthan may be potentially useful as scaffolds for multipotent mesenchymal stromal cells, given that they present suitable physico-chemical characteristics and have adequate tridimensional structure for the adhesion, growth, and maintenance of cell function. Therefore, the purpose of this work was to assess the applicability of bioactive dressings associating dense and porous chitosan-xanthan membranes to multipotent mesenchymal stromal cells for the treatment of skin wounds. The membranes showed to be non-mutagenic and allowed efficient adhesion and proliferation of the mesenchymal stromal cells in vitro. In vivo assays performed with mesenchymal stromal cells grown on the surface of the dense membranes showed acceleration of wound healing in Wistar rats, thus indicating that the use of this cell-scaffold association for tissue engineering purposes is feasible and attractive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The prostate stroma is a key mediator of epithelial differentiation and development, and potentially plays a role in the initiation and progression of prostate cancer. The tumor-associated stroma is marked by increased expression of CD90/THYI. Isolation and characterization of these stromal cells could provide valuable insight into the biology of the tumor microenvironment. Methods: Prostate CD90(+) stromal fibromuscular cells from tumor specimens were isolated by cell-sorting and analyzed by DNA microarray. Dataset analysis was used to compare gene expression between histologically normal and tumor-associated stromal cells. For comparison, stromal cells were also isolated and analyzed from the urinary bladder. Results: The tumor-associated stromal cells were found to have decreased expression of genes involved in smooth muscle differentiation, and those detected in prostate but not bladder. Other differential expression between the stromal cell types included that of the CXC-chemokine genes. Conclusion: CD90(+) prostate tumor-associated stromal cells differed from their normal counterpart in expression of multiple genes, some of which are potentially involved in organ development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Umbilical cord mesenchymal stromal cells (MSC) have been widely investigated for cell-based therapy studies as an alternative source to bone marrow transplantation. Umbilical cord tissue is a rich source of MSCs with potential to derivate at least muscle, cartilage, fat, and bone cells in vitro. The possibility to replace the defective muscle cells using cell therapy is a promising approach for the treatment of progressive muscular dystrophies (PMDs), independently of the specific gene mutation. Therefore, preclinical studies in different models of muscular dystrophies are of utmost importance. The main objective of the present study is to evaluate if umbilical cord MSCs have the potential to reach and differentiate into muscle cells in vivo in two animal models of PMDs. In order to address this question we injected (1) human umbilical cord tissue (hUCT) MSCs into the caudal vein of SJL mice; (2) hUCT and canine umbilical cord vein (cUCV) MSCs intra-arterially in GRMD dogs. Our results here reported support the safety of the procedure and indicate that the injected cells could engraft in the host muscle in both animal models but could not differentiate into muscle cells. These observations may provide important information aiming future therapy for muscular dystrophies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Myelodysplastic syndromes (MDS) are a group of clonal hematological disorders characterized by ineffective hematopoiesis with morphological evidence of marrow cell dysplasia resulting in peripheral blood cytopenia. Microarray technology has permitted a refined high-throughput mapping of the transcriptional activity in the human genome. Non-coding RNAs (ncRNAs) transcribed from intronic regions of genes are involved in a number of processes related to post-transcriptional control of gene expression, and in the regulation of exon-skipping and intron retention. Characterization of ncRNAs in progenitor cells and stromal cells of MDS patients could be strategic for understanding gene expression regulation in this disease. Methods: In this study, gene expression profiles of CD34(+) cells of 4 patients with MDS of refractory anemia with ringed sideroblasts (RARS) subgroup and stromal cells of 3 patients with MDS-RARS were compared with healthy individuals using 44 k combined intron-exon oligoarrays, which included probes for exons of protein-coding genes, and for non-coding RNAs transcribed from intronic regions in either the sense or antisense strands. Real-time RT-PCR was performed to confirm the expression levels of selected transcripts. Results: In CD34(+) cells of MDS-RARS patients, 216 genes were significantly differentially expressed (q-value <= 0.01) in comparison to healthy individuals, of which 65 (30%) were non-coding transcripts. In stromal cells of MDS-RARS, 12 genes were significantly differentially expressed (q-value <= 0.05) in comparison to healthy individuals, of which 3 (25%) were non-coding transcripts. Conclusions: These results demonstrated, for the first time, the differential ncRNA expression profile between MDS-RARS and healthy individuals, in CD34(+) cells and stromal cells, suggesting that ncRNAs may play an important role during the development of myelodysplastic syndromes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Limb-girdle muscular dystrophies (LGMDs) are a heterogeneous group of disorders characterized by progressive degeneration of skeletal muscle caused by the absence of or defective muscular proteins. The murine model for limb-girdle muscular dystrophy 2B (LGMD2B), the SJL mice, carries a deletion in the dysferlin gene that causes a reduction in the protein levels to 15% of normal. The mice show muscle weakness that begins at 4-6 weeks and is nearly complete by 8 months of age. The possibility of restoring the defective muscle protein and improving muscular performance by cell therapy is a promising approach for the treatment of LGMDs or other forms of progressive muscular dystrophies. Here we have injected human adipose stromal cells (hASCs) into the SJL mice, without immunosuppression, aiming to assess their ability to engraft into recipient dystrophic muscle after systemic delivery; form chimeric human/mouse muscle fibers; express human muscle proteins in the dystrophic host and improve muscular performance. We show for the first time that hASCs are not rejected after systemic injection even without immunosuppression, are able to fuse with the host muscle, express a significant amount of human muscle proteins, and improve motor ability of injected animals. These results may have important applications for future therapy in patients with different forms of muscular dystrophies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metalloproteinases, especially metal loprotemase-2 (MMP-2), are known for their role in the degradation of the extracellular matrix. Nevertheless, a thorough understanding of MMP-2 expression in neoplastic lesions of the uterine cervix has yet to be accomplished. This study aimed to analyze the MMP-2 expression in cervical intraepithelial neoplasia III (CIN3) and in cervical squamous cell carcinoma, in tumor cells and adjacent stromal cells. MMP-2 expression was assessed by an immunohistochernical technique. MMP-2 expression was greater in the stromal cells of invasive carcinomas than in CIN3 (p < 0.0001). MMP-2 expression in stromal cells correlates with the clinical stage, gradually increasing as the tumor progresses (p = 0.04). This study corroborates that stromal cells play an important role in tumor invasion and progression, mediated by the progressive enhancement of MMP-2 expression from CIN3 to advanced invasive tumor. The intense MMP-2 expression most probably is associated with poor tumor prognosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stromal cells from pediatric myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) associated with MDS(MDS-AML) present high expression of leukemia inhibitor factor (LIF). We demonstrated using mitogen-activated protein kinase ( MAPK) inhibitors that in stromal cells from pediatric MDS and MDS-AML, p38MAPK was critical in serum-induced secretion of LIF. The serum induction of phosphorylated p38MAPK form was observed only in stromal cells from healthy children, whereas in MDS and MDS-AML basal levels were maintained suggesting constitutive p38MAPK activation. Our study suggested the possible importance in pediatric MDS of p38MAPK signaling pathway which may be a future therapeutic target. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adherent umbilical cord blood stromal cells (AUCBSCs) are multipotent cells with differentiation capacities. Therefore, these cells have been investigated for their potential in cell-based therapies. Quantum Dots (QDs) are an alternative to organic dyes and fluorescent proteins because of their long-term photostability. In this study we determined the effects of the cell passage on AUCBSCs morphology, phenotype, and differentiation potential. QDs labeled AUCBSCs in the fourth cell passage were differentiated in the three mesodermal lineages and were evaluated using cytochemical methods and transmission electron microscopy (TEM). Gene and protein expression of the AUCBSCs immunophenotypic markers were also evaluated in the labeled cells by real-time quantitative PCR and flow cytometry. In this study we were able to define the best cellular passage to work with AUCBSCs and we also demonstrated that the use of fluorescent QDs can be an efficient nano-biotechnological tool in differentiation studies because labeled cells do not have their characteristics compromised.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesenchymal stromal cells (MSCs) suppress T cell responses through mechanisms not completely understood. Adenosine is a strong immunosuppressant that acts mainly through its receptor A(2a) (ADORA2A). Extracellular adenosine levels are a net result of its production (mediated by CD39 and CD73), and of its conversion into inosine by Adenosine Deaminase (ADA). Here we investigated the involvement of ADO in the immunomodulation promoted by MSCs. Human T lymphocytes were activated and cultured with or without MSCs. Compared to lymphocytes cultured without MSCs, co-cultured lymphocytes were suppressed and expressed higher levels of ADORA2A and lower levels of ADA. In co-cultures, the percentage of MSCs expressing CD39, and of T lymphocytes expressing CD73, increased significantly and adenosine levels were higher. Incubation of MSCs with media conditioned by activated T lymphocytes induced the production of adenosine to levels similar to those observed in co-cultures, indicating that adenosine production was mainly derived from MSCs. Finally, blocking ADORA2A signaling raised lymphocyte proliferation significantly. Our results suggest that some of the immunomodulatory properties of MSCs may, in part, be mediated through the modulation of components related to adenosine signaling. These findings may open new avenues for the development of new treatments for GVHD and other inflammatory diseases. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. The relationship of multipotent mesenchymal stromal cells (MSC) with pericytes and fibroblasts has not been established thus far, although they share many markers of primitive marrow stromal cells and the osteogenic, adipogenic, and chondrogenic differentiation potentials. Materials and Methods. We compared MSCs from adult or fetal tissues, MSC differentiated in vitro, fibroblasts and cultures of retinal pericytes obtained either by separation with anti-CD146 or adhesion. The characterizations included morphological, immunophenotypic, gene-expression profile, and differentiation potential. Results. Osteogenic, adipocytic, and chondrocytic differentiation was demonstrated for MSC, retinal perivascular cells, and fibroblasts. Cell morphology and the phenotypes defined by 22 markers were very similar. Analysis of the global gene expression obtained by serial analysis of gene expression for 17 libraries and by reverse transcription polymerase chain reaction of 39 selected genes from 31 different cell cultures, revealed similarities among MSC, retinal perivascular cells, and hepatic stellate cells. Despite this overall similarity, there was a heterogeneous expression of genes related to angiogenesis, in MSC derived from veins, artery, perivascular cells, and fibroblasts. Evaluation of typical pericyte and MSC transcripts, such as NG2, CD146, CD271, and CD140B on CD146 selected perivascular cells and MSC by real-time polymerase chain reaction confirm the relationship between these two cell types. Furthermore, the inverse correlation between fibroblast-specific protein-1 and CD146 transcripts observed on pericytes, MSC, and fibroblasts highlight their potential use as markers of this differentiation pathway. Conclusion. Our results indicate that human MSC and pericytes are similar cells located in the wall of the vasculature, where they function as cell sources for repair and tissue maintenance, whereas fibroblasts are more differentiated cells with more restricted differentiation potential. (C) 2008 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human mesenchymal stem/stromal cells (MSCs) have received considerable attention in the field of cell-based therapies due to their high differentiation potential and ability to modulate immune responses. However, since these cells can only be isolated in very low quantities, successful realization of these therapies requires MSCs ex-vivo expansion to achieve relevant cell doses. The metabolic activity is one of the parameters often monitored during MSCs cultivation by using expensive multi-analytical methods, some of them time-consuming. The present work evaluates the use of mid-infrared (MIR) spectroscopy, through rapid and economic high-throughput analyses associated to multivariate data analysis, to monitor three different MSCs cultivation runs conducted in spinner flasks, under xeno-free culture conditions, which differ in the type of microcarriers used and the culture feeding strategy applied. After evaluating diverse spectral preprocessing techniques, the optimized partial least square (PLS) regression models based on the MIR spectra to estimate the glucose, lactate and ammonia concentrations yielded high coefficients of determination (R2 ≥ 0.98, ≥0.98, and ≥0.94, respectively) and low prediction errors (RMSECV ≤ 4.7%, ≤4.4% and ≤5.7%, respectively). Besides PLS models valid for specific expansion protocols, a robust model simultaneously valid for the three processes was also built for predicting glucose, lactate and ammonia, yielding a R2 of 0.95, 0.97 and 0.86, and a RMSECV of 0.33, 0.57, and 0.09 mM, respectively. Therefore, MIR spectroscopy combined with multivariate data analysis represents a promising tool for both optimization and control of MSCs expansion processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary : Antigen-specific T lymphocytes constantly patrol the body to search for invading pathogens. Given the large external and internal body surfaces that need to be surveyed, a sophisticated strategy is necessary to facilitate encounters between T cells and pathogens. Dendritic cells present at all body surfaces are specialized in capturing pathogens and bringing them to T zones of secondary lymphoid organs, such as the lymph nodes and the spleen. Here, dendritic cells present antigenic fragments and activate the rare antigen-specific T lymphocytes. This induction of an immune response is facilitated in multiple ways by a dense network of poorly characterized stromal cells, termed fibroblastic reticular cells (FRCs). They constitutively produce the chemokines CCL21 and CCL19, which attract naïve T cells and dendritic cells into the T zone. Further, they provide an adhesion scaffold for dendritic cells and a migration scaffold for naïve T cells, allowing efficient screening of dendritic cell by thousands of T cells. FRCs also form a system of microchannels (conduits) that allows rapid transport of antigen or cytokines from the subcapsular sinus to the T zone. We characterized lymph node FRCS by flow cytometry, immunofluorescence microscopy, real time PCR and functional assays and could show that FRCs are a unique type of myofibroblasts which produce the T cell survival factor IL-7. This function was shown to be critically involved in regulating the size of the peripheral T cell pool and further demonstrates the importance of FRCs in maintaining immunocompetence. As we observed that some dendritic cells also express the receptor for IL-7, we expected a similar function of IL-7 in their survival. Surprisingly, we found no role for IL-7 in their survival but in their development. Analysis of hematopoietic precursors suggested that part of the dendritic cell pool develops out of an IL-7 dependent precursor, which maybe shared with lymphocytes. During the induction of an immune response, lymph node homeostasis is drastically altered when the lymph node expands several-fold in size to accommodate many more lymphocytes. Here, we describe that this expansion of the T zone is accompanied by the activation and proliferation of FRCs thereby preserving T zone architecture and function. This expansion of the FRC network is regulated by antigen-independent and -dependent events. It demonstrates the incredible plasticity of this organ allowing clonal expansion of antigen-specific lymphocytes. Résumé : Les lymphocytes T, spécifiques pour un antigène particulier, patrouillent constamment le corps à la recherche de l'invasion de pathogène. A cause des grandes surfaces externes et internes du corps, une stratégie sophistiquée est nécessaire afin de faciliter les rencontres entre les cellules T et les agents pathogènes. Les cellules dendritiques présentes dans toutes les surfaces du corps sont spécialisées dans la capture des agents pathogènes et dans le transport vers les zones T des organes lymphoïdes secondaires, comme les ganglions lymphatiques et la rate. Dans ces organes, les cellules dendritiques présentent les fragments antigéniques et activent les lymphocytes T rares. L'induction de cette réponse immunitaire est facilitée de différentes manières par un réseau dense de cellules strornales mal caractérisé, appelées 'fibroblastic reticular tells' (FRCs). FRCs produisent constitutivement les chimiokines CCL21 et CCL19, qui attirent les lymphocytes T naïfs et les cellules dendritiques vers la zone T. En outre, elles donnent une base d'adhérence pour les cellules dendritiques et elles attirent les cellules T naïves vers les cellules dendritiques. Les FRCs forment des petits canaux (ou conduits) qui permettent le transport rapide d'antigènes solubles ou de cytokines vers la zone T. Nous avons caractérisé les FRCs par cytométrie en flux, immunofluorescence et par PCR en temps réel et nous avons démontré que les FRCs sont un type unique de rnyofibroblastes qui produisent un facteur de survie des cellules T, l'Interleukine-7. Il a été démontré que cette fonction est cruciale afin d'augmenter la taille et la diversité du répertoire de cellules T, et ainsi, maintenir l'immunocompétence. Comme nous avons observé que certaines cellules dendritiques expriment également le récepteur de l'IL-7, nous avons testé une fonction similaire dans leur survie. Étonnamment, nous n'avons pas trouvé de rôle pour l'IL-7 dans leur survie, mais dans leur développement. L'analyse des précurseurs hématopoïétiques a suggéré qu'une fraction des cellules dendritiques se développe à partir des précurseurs dépendants de l'IL-7, qui sont probablement partagés avec les lymphocytes. Au cours de l'induction d'une réponse immunitaire, l'homéostasie du ganglion lymphatique est considérablement modifiée. En effet, sa taille augmente considérablement afin d'accueillir un plus grand nombre de lymphocytes. Nous décrivons ici que cet élargissement de la zone T est accompagné par l'activation et 1a prolifération des FRCs, préservant l'architecture et la fonction de la zone T. Cette expansion du réseau des FRCs est régie par des évènements à la fois dépendants et indépendants de l'antigène. Cela montre l'incroyable plasticité de cet organe qui permet l'expansion clonale des lymphocytes T spécifiques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The persistence of serum IgG antibodies elicited in human infants is much shorter than when such responses are elicited later in life. The reasons for this rapid waning of antigen-specific antibodies elicited in infancy are yet unknown. We have recently shown that adoptively transferred tetanus toxoid (TT)-specific plasmablasts (PBs) efficiently reach the bone marrow (BM) of infant mice. However, TT-specific PBs fail to persist in the early-life BM, suggesting that they fail to receive the molecular signals that support their survival/differentiation. Using a proliferation-inducing ligand (APRIL)- and B-cell activating factor (BAFF) B-lymphocyte stimulator (BLyS)-deficient mice, we demonstrate here that APRIL is a critical factor for the establishment of the adult BM reservoir of anti-TT IgG-secreting cells. Through in vitro analyses of PB/plasma cell (PC) survival/differentiation, we show that APRIL induces the expression of Bcl-X(L) by a preferential binding to heparan sulfate proteoglycans at the surface of CD138(+) cells. Last, we identify BM-resident macrophages as the main cells that provide survival signals to PBs and show that this function is slowly acquired in early life, in parallel to a progressive acquisition of APRIL expression. Altogether, this identifies APRIL as a critical signal for PB survival that is poorly expressed in the early-life BM compartment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to characterize the cellular mechanisms leading to the beneficial effect of anti-oxidative gene therapy and pro-angiogenic stem cell therapy in acute peripheral ischemia. Post-ischemic events aim to re-establish tissue blood perfusion, to clear cellular debris, and to regenerate lost tissue by differentiation of satellite cells into myoblasts. Although leukocytes have an essential role in clearing cellular debris and promoting angiogenesis, they also contribute to tissue injury through excessive ROS production. First, we investigated the therapeutic properties of extracellular superoxide dismutase (SOD3) gene transfer. SOD3 was shown to reduce oxidative stress, to normalize glucose metabolism, and to enhance cell proliferation in the ischemic muscle. Analysis of the mitogenic Ras-Erk1/2 pathway showed SOD3 mediated induction offering a plausible explanation for enhanced cell proliferation. In addition, SOD3 reduced NF-κB activity by enhancing IκBα expression thus leading to reduced expression of inflammatory cytokines and adhesion molecules with consequent reduction in macrophage infiltration. Secondly, we sought to determine the fate and the effect of locally transplanted mesenchymal stem/stromal cells (MSCs) in acute ischemia. We showed that a vast majority of the transplanted cells are cleared from the injury site within 24 hours after local transplantation. Despite rapid clearance, transplantation was able to temporarily promote angiogenesis and cell proliferation in the muscle. Lack of graft-derived growth factor expression suggests other than secretory function to mediate this observed effect. In conclusion, both SOD3 and MSCs could be utilized to alleviate peripheral ischemia induced tissue injury. We have described a previously unidentified growth regulatory role for SOD3, and suggest a novel mechanism whereby transplanted MSCs enhance the reparative potential of the recipient tissue through physical contacts.