589 resultados para stretch
Resumo:
The aim of this work was to evaluate the floristic composition, richness, and diversity of the upper and lower strata of a stretch of mixed rain forest near the city of Itaberá, in southeastern Brazil. We also investigated the differences between this conservation area and other stretches of mixed rain forest in southern and southeastern Brazil, as well as other nearby forest formations, in terms of their floristic relationships. For our survey of the upper stratum (diameter at breast height [DBH] > 15 cm), we established 50 permanent plots of 10 × 20 m. Within each of those plots, we designated five, randomly located, 1 × 1 m subplots, in order to survey the lower stratum (total height > 30 cm and DBH < 15 cm). In the upper stratum, we sampled 1429 trees and shrubs, belonging to 134 species, 93 genera, and 47 families. In the lower stratum, we sampled 758 trees and shrubs, belonging to 93 species, 66 genera, and 39 families. In our floristic and phytosociological surveys, we recorded 177 species, belonging to 106 genera and 52 families. The Shannon Diversity Index was 4.12 and 3.5 for the upper and lower strata, respectively. Cluster analysis indicated that nearby forest formations had the strongest floristic influence on the study area, which was therefore distinct from other mixed rain forests in southern Brazil and in the Serra da Mantiqueira mountain range.
Resumo:
To evaluate the remodeling of collagen fibers in the articular cartilage of rat ankles, with and without immobilization, after application of muscle stretching protocol. Twenty three Wistar rats were divided into four groups: immobilized (I), n = 6; immobilized and stretched (IS), n = 6; stretched (S), n = 6 and control (C), n = 5. The animals in groups I and IS were submitted to immobilization. After the period of immobilization, the animals in groups IS and S were submitted to a muscle stretching protocol. At the end of the experiment, the animals were euthanized and the joints removed, processed and stained with Picrosirius red. The analysis was carried out using a polarized light microscope. The density of collagen fibers were quantified according to the intensity of birefringence displayed. By way of statistical analyses, the right and left hind limbs of the different groups were compared based on the total density of collagen fibers, the density of thick collagen fibers and the density of thin collagen fibers. Immobilization promoted a reduction in density of the thin fibers and of total collagen. The muscle stretching protocol after immobilization promoted a reduction in density of the total collagen and of the thick fibers, but the density of the thin fibers showed the same values as control. The collagen fibers were remodeled by the different stimuli. Immobilization was harmful to the collagen fibers and the muscle stretching protocol only recovered the thin collagen fibers.
Resumo:
Aims Cysteine- and glycine-rich protein 3/muscle LIM-domain protein (CRP3/MLP) mediates protein-protein interaction with actin filaments in the heart and is involved in muscle differentiation and vascular remodelling. Here, we assessed the induction of CRP3/MLP expression during arterialization in human and rat veins. Methods and results Vascular CRP3/MLP expression was mainly observed in arterial samples from both human and rat. Using quantitative real time RT-PCR, we demonstrated that the CRP3/MLP expression was 10 times higher in smooth muscle cells (SMCs) from human mammary artery (h-MA) vs. saphenous vein (h-SV). In endothelial cells (ECs), CRP3/MLP was scarcely detected in either h-MA or h-SV. Using an ex vivo flow through system that mimics arterial condition, we observed induction of CRP3/MLP expression in arterialized h-SV. Interestingly, the upregulation of CRP3/MLP was primarily dependent on stretch stimulus in SMCs, rather than shear stress in ECs. Finally, using a rat vein in vivo arterialization model, early (1-14 days) CRP3/MLP immunostaining was observed predominantly in the inner layer and later (28-90 days) it appeared more scattered in the vessel layers. Conclusion Here we provide evidence that CRP3/MLP is primarily expressed in arterial SMCs and that stretch is the main stimulus for CRP3/MLP induction in veins exposed to arterial haemodynamic conditions.
Resumo:
The study aimed to verify the physiological injury behavior by stretching the soleus muscle of rats, using a noninvasive experimental model. Twenty-four rats were used and divided into three groups of eight animals: control group (A), group that performed tetanus followed by electrical stimulation and a sudden dorsiflexion of the left paw performed by a device equipped with a mechanism of muscle soleus rapid stretching (B); and a group that only received the tetanus (C). Three days later, the animals were killed, and the soleus muscle was resected and divided into three segments. Morphological changes indicative of muscle damage appeared in all three segments of group B. In a lesser degree, similar changes were also detected in muscles subjected to only tetanus. This model was effective; reproducing an injury similar to what occurs in human sports injuries.
Resumo:
Aims: We assessed the effects of right atrial stretch on gastric tone and neuro-humoral pathways involved in this phenomenon. Main methods: Anesthetized male rats were submitted for monitoring of the mean arterial pressure (MAP) and central venous pressure (CVP). A balloon catheter positioned into the stomach monitored by plethysmography the gastric volume (GV). All rats were monitored for 55-min. After the first 20-min of monitoring (basal period), rats were either submitted to a 5-min interval of atrial stretch (AS) or maintained as controls. An intra-atrial balloon catheter was distended with 30,50, or 70 mu L of saline. GV and hemodynamic data were also monitored for a further 30-min. Another set of rats, either previously submitted to subdiaphragmaic vagotomy or splanchnicectomy plus celiac ganglionectomy or maintained as controls (sham), were also submitted to AS. Each subset consisted of six rats. The plasma level of the atrial natriuretic peptide (ANP) was measured in another group of rats. Data were compared by ANOVA followed by Bonferroni`s test. Key findings: In control rats, the GV, MAP, and CVP remained at stable levels throughout the studies. In addition to increase the CVP, AS also decreased (P<0.05) the GV by 14%, 11.5%, and 16.5% in the 30, 50, and 70 mu L groups, respectively. Vagotomy prevented the GV decrease. In contrast, the AS decreased (P<0.05) the GV by 21.3% in splanchnicectomized rats. Significance: AS decreased the GV of rats in a volume-dependent manner, a phenomenon prevented by vagotomy but enhanced by celiac ganglionectomy. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
This work describes the reproduction of Gymnogeophagus labiatus (Hensel, 1870) from an upper stretch of Sinos river, southern Brazil, based on the analysis of 174 males and 132 females captured in monthly samples taken from January to December 2007. Results showed that reproductive activity occur in spring and summer although ripe males were found along the year. The standard length of the smallest ripe male was 104.74 mm (Lt) and the smallest ripe female was 55.00 mm (Lt). There was a significant difference in total sex ratio, with 1.32 males to each female (χ2 = 5.76). Males were much more abundant in March (1.75 males: 1 female) and December (5 males: 1 female). Females were more abundant in the 62├77 mm interval (1 male: 2.36 female) while males were more abundant in the 77├92 mm size interval (2.57 males: 1 female). The largest length intervals were composed of only males. Mean absolute fecundity was 113.4 (± 31.24 sd) and mean relative fecundity was 0.0125 (± 0.0026 sd) oocytes/mg. In ripe ovaries, small-diameter oocytes were observed at high frequencies while larger ones occurred at lower frequencies. This pattern is common in fishes with asynchronous oocyte development. Characteristics of G. labiatus, such as low fecundity, asynchrony in oocyte development, multiple spawning, and its well-known parental care behavior, are consistent with an equilibrium strategy, as proposed for other cichlids.
Resumo:
The net mechanical efficiency of positive work (eta(pos)) has been shown to increase if it is immediately preceded by negative work. This phenomenon is explained by the storage of elastic energy during the negative phase and its release during the subsequent positive phase. If a transition time (T) takes place, the elastic energy is dissipated into heat. The aim of the present study was to investigate the relationship between eta(pos) and T, and to determine the minimal T required so that eta(pos) reached its minimal value. Seven healthy male subjects were tested during four series of lowering-raising of the body mass. In the first series (S (0)), the negative and positive phases were executed without any transition time. In the three other series, T was varied by a timer (0.12, 0.24 and 0.56 s for series S (1), S (2) and S (3), respectively). These exercises were performed on a force platform sensitive to vertical forces to measure the mechanical work and a gas analyser was used to determine the energy expenditure. The results indicated that eta(pos) was the highest (31.1%) for the series without any transition time (S (0)). The efficiencies observed with transition times (S (1), S (2) and S (3)) were 27.7, 26.0 and 23.8%, respectively, demonstrating that T plays an important role for mechanical efficiency. The investigation of the relationship between eta(pos) and T revealed that the minimal T required so that eta(pos) reached its minimal value is 0.59 s.
Resumo:
Lectio praecursoria
Resumo:
The mechanical properties of the living cell are intimately related to cell signaling biology through cytoskeletal tension. The tension borne by the cytoskeleton (CSK) is in part generated internally by the actomyosin machinery and externally by stretch. Here we studied how cytoskeletal tension is modified during stretch and the tensional changes undergone by the sites of cell-matrix interaction. To this end we developed a novel technique to map cell-matrix stresses during application of stretch. We found that cell-matrix stresses increased with imposition of stretch but dropped below baseline levels on stretch release. Inhibition of the actomyosin machinery resulted in a larger relative increase in CSK tension with stretch and in a smaller drop in tension after stretch release. Cell-matrix stress maps showed that the loci of cell adhesion initially bearing greater stress also exhibited larger drops in traction forces after stretch removal. Our results suggest that stretch partially disrupts the actin-myosin apparatus and the cytoskeletal structures that support the largest CSK tension. These findings indicate that cells use the mechanical energy injected by stretch to rapidly reorganize their structure and redistribute tension.
Effect of one stretch a week applied to the immobilized soleus muscle on rat muscle fiber morphology
Resumo:
We determined the effect of stretching applied once a week to the soleus muscle immobilized in the shortened position on muscle fiber morphology. Twenty-six male Wistar rats weighing 269 ± 26 g were divided into three groups. Group I, the left soleus was immobilized in the shortened position for 3 weeks; group II, the soleus was immobilized in the shortened position and stretched once a week for 3 weeks; group III, the soleus was submitted only to stretching once a week for 3 weeks. The medial part of the soleus muscle was frozen for histology and muscle fiber area evaluation and the lateral part was used for the determination of number and length of serial sarcomeres. Soleus muscle submitted only to immobilization showed a reduction in weight (44 ± 6%, P = 0.002), in serial sarcomere number (23 ± 15%) and in cross-sectional area of the fibers (37 ± 31%, P < 0.001) compared to the contralateral muscles. The muscle that was immobilized and stretched showed less muscle fiber atrophy than the muscles only immobilized (P < 0.05). Surprisingly, in the muscles submitted only to stretching, fiber area was decreased compared to the contralateral muscle (2548 ± 659 vs 2961 ± 806 µm², respectively, P < 0.05). In conclusion, stretching applied once a week for 40 min to the soleus muscle immobilized in the shortened position was not sufficient to prevent the reduction of muscle weight and of serial sarcomere number, but provided significant protection against muscle fiber atrophy. In contrast, stretching normal muscles once a week caused a reduction in muscle fiber area.
Resumo:
The rat models currently employed for studies of nerve regeneration present distinct disadvantages. We propose a new technique of stretch-induced nerve injury, used here to evaluate the influence of gabapentin (GBP) on nerve regeneration. Male Wistar rats (300 g; n=36) underwent surgery and exposure of the median nerve in the right forelimbs, either with or without nerve injury. The technique was performed using distal and proximal clamps separated by a distance of 2 cm and a sliding distance of 3 mm. The nerve was compressed and stretched for 5 s until the bands of Fontana disappeared. The animals were evaluated in relation to functional, biochemical and histological parameters. Stretching of the median nerve led to complete loss of motor function up to 12 days after the lesion (P<0.001), compared to non-injured nerves, as assessed in the grasping test. Grasping force in the nerve-injured animals did not return to control values up to 30 days after surgery (P<0.05). Nerve injury also caused an increase in the time of sensory recovery, as well as in the electrical and mechanical stimulation tests. Treatment of the animals with GBP promoted an improvement in the morphometric analysis of median nerve cross-sections compared with the operated vehicle group, as observed in the area of myelinated fibers or connective tissue (P<0.001), in the density of myelinated fibers/mm2 (P<0.05) and in the degeneration fragments (P<0.01). Stretch-induced nerve injury seems to be a simple and relevant model for evaluating nerve regeneration.
Resumo:
Interaction force constants between bond-stretching and angle-bending co-ordinates in polyatomic molecules have been attributed, by some authors, to changes of hybridization due to orbital-following of the bending co-ordinate, and consequent changes of bond length due to the change of hybridization. A method is described for using this model quantitatively to reduce the number of independent force constants in the potential function of a polyatomic molecule, by relating stretch-bend interaction constants to the corresponding diagonal stretching constants. It is proposed to call this model the Hybrid Orbital Force Field. The model is applied to the tetrahedral four co-ordinated carbon atom (as in methane) and to the trigonal planar three coordinated carbon atom (as in formaldehyde).
Resumo:
The intracavity photoacoustic dye laser spectrum of CHCl3 in the gas phase at 16 350 cm−1 is reported. The v=6–0 overtone of the CH stretch is observed, and found to exhibit a rotational band contour closely analogous to the v=1–0 fundamental. The implication of this result for intramolecular vibrational energy redistribution is discussed.
Resumo:
Prolonged hemodynamic load as a result of hypertension eventually leads to maladaptive cardiac adaptation and heart failure. The signalling pathways that underlie these changes are still poorly understood. The adaptive response to mechanical load is mediated by mechanosensors which convert the mechanical stimuli into a biological response. We examined the effect of cyclic mechanical stretch on myocyte adaptation using neonatal rat ventricular myocytes with 10% (adaptive) or 20% (maladaptive) maximum strain, 1Hz for 48 hours to mimic in vivo mechanical stress. Cells were also treated with and without L-NAME, a general nitric oxide synthase (NOS) inhibitor to suppress NO production. Maladaptive 20% mechanical stretch led to a significant loss of intact sarcomeres which was rescued by LNAME (P<0.05, n≥5 cultures). We hypothesized that the mechanism was through NOinduced alteration of myocyte gene expression. L-NAME up-regulated the mechanosensing proteins Muscle LIM protein (MLP (by 100%, p<0.05, n=4 cultures)) and lipoma preferred partner, a novel cardiac protein (LPP (by 80%, p<0.05, n=4 cultures)). L-NAME also significantly altered the subcellular localisation of LPP and MLP in a manner that favoured growth and adaptation. These findings suggest that NO participates in stretch-mediated adaptation. The use of isoform selective NOS inhibitors indicated a complex interaction between iNOS and nNOS isoforms regulate gene expression. LPP knockdown by siRNA led to formation of α-actinin aggregates and Z-bodies showing that myofibrillogenesis was impaired. There was an up-regulation of E3 ubiquitin ligase (MUL1) by 75% (P<0.05, n=5 cultures). This indicates that NO contributes to stretch-mediated adaptation via the upregulation of proteins associated mechansensing and myofibrillogenesis, thereby presenting potential therapeutic targets during the progression of heart failure. Keywords: Mechanotransduction, heart failure, stretch, heart, hypertrophy