998 resultados para stochastic representation
Resumo:
The aim of this paper is to demonstrate the validity of using Gaussian mixture models (GMM) for representing probabilistic distributions in a decentralised data fusion (DDF) framework. GMMs are a powerful and compact stochastic representation allowing efficient communication of feature properties in large scale decentralised sensor networks. It will be shown that GMMs provide a basis for analytical solutions to the update and prediction operations for general Bayesian filtering. Furthermore, a variant on the Covariance Intersect algorithm for Gaussian mixtures will be presented ensuring a conservative update for the fusion of correlated information between two nodes in the network. In addition, purely visual sensory data will be used to show that decentralised data fusion and tracking of non-Gaussian states observed by multiple autonomous vehicles is feasible.
Resumo:
A new stabilization scheme, based on a stochastic representation of the discretized field variables, is proposed with a view to reduce or even eliminate unphysical oscillations in the mesh-free numerical simulations of systems developing shocks or exhibiting localized bands of extreme deformation in the response. The origin of the stabilization scheme may be traced to nonlinear stochastic filtering and, consistent with a class of such filters, gain-based additive correction terms are applied to the simulated solution of the system, herein achieved through the element-free Galerkin method, in order to impose a set of constraints that help arresting the spurious oscillations. The method is numerically illustrated through its Applications to inviscid Burgers' equations, wherein shocks may develop as a result of intersections of the characteristics, and to a gradient plasticity model whose response is often characterized by a developing shear band as the external load is gradually increased. The potential of the method in stabilized yet accurate numerical simulations of such systems involving extreme gradient variations in the response is thus brought forth. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This paper considers an extension to the skew-normal model through the inclusion of an additional parameter which can lead to both uni- and bi-modal distributions. The paper presents various basic properties of this family of distributions and provides a stochastic representation which is useful for obtaining theoretical properties and to simulate from the distribution. Moreover, the singularity of the Fisher information matrix is investigated and maximum likelihood estimation for a random sample with no covariates is considered. The main motivation is thus to avoid using mixtures in fitting bimodal data as these are well known to be complicated to deal with, particularly because of identifiability problems. Data-based illustrations show that such model can be useful. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
In this article, we study further properties of a skew normal distribution, called the skew-normal-Cauchy (SNC) distribution by Nadarajah and Kotz (2003). A stochastic representation is obtained which allows alternative derivations for moments, moments generating function, and skewness and kurtosis coefficients. Issues related to singularity of the Fisher information matrix are investigated.
Resumo:
In this paper a new approach is considered for studying the triangular distribution using the theoretical development behind Skew distributions. Triangular distribution are obtained by a reparametrization of usual triangular distribution. Main probabilistic properties of the distribution are studied, including moments, asymmetry and kurtosis coefficients, and an stochastic representation, which provides a simple and efficient method for generating random variables. Moments estimation is also implemented. Finally, a simulation study is conducted to illustrate the behavior of the estimation approach proposed.
Resumo:
In this article, we study a new class of non negative distributions generated by the symmetric distributions around zero. For the special case of the distribution generated using the normal distribution, properties like moments generating function, stochastic representation, reliability connections, and inference aspects using methods of moments and maximum likelihood are studied. Moreover, a real data set is analyzed, illustrating the fact that good fits can result.
Resumo:
The main objective of this paper is to study a logarithm extension of the bimodal skew normal model introduced by Elal-Olivero et al. [1]. The model can then be seen as an alternative to the log-normal model typically used for fitting positive data. We study some basic properties such as the distribution function and moments, and discuss maximum likelihood for parameter estimation. We report results of an application to a real data set related to nickel concentration in soil samples. Model fitting comparison with several alternative models indicates that the model proposed presents the best fit and so it can be quite useful in real applications for chemical data on substance concentration. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
We present a Bayesian approach for modeling heterogeneous data and estimate multimodal densities using mixtures of Skew Student-t-Normal distributions [Gomez, H.W., Venegas, O., Bolfarine, H., 2007. Skew-symmetric distributions generated by the distribution function of the normal distribution. Environmetrics 18, 395-407]. A stochastic representation that is useful for implementing a MCMC-type algorithm and results about existence of posterior moments are obtained. Marginal likelihood approximations are obtained, in order to compare mixture models with different number of component densities. Data sets concerning the Gross Domestic Product per capita (Human Development Report) and body mass index (National Health and Nutrition Examination Survey), previously studied in the related literature, are analyzed. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this paper, an alternative skew Student-t family of distributions is studied. It is obtained as an extension of the generalized Student-t (GS-t) family introduced by McDonald and Newey [10]. The extension that is obtained can be seen as a reparametrization of the skewed GS-t distribution considered by Theodossiou [14]. A key element in the construction of such an extension is that it can be stochastically represented as a mixture of an epsilon-skew-power-exponential distribution [1] and a generalized-gamma distribution. From this representation, we can readily derive theoretical properties and easy-to-implement simulation schemes. Furthermore, we study some of its main properties including stochastic representation, moments and asymmetry and kurtosis coefficients. We also derive the Fisher information matrix, which is shown to be nonsingular for some special cases such as when the asymmetry parameter is null, that is, at the vicinity of symmetry, and discuss maximum-likelihood estimation. Simulation studies for some particular cases and real data analysis are also reported, illustrating the usefulness of the extension considered.
Resumo:
Item response theory (IRT) comprises a set of statistical models which are useful in many fields, especially when there is an interest in studying latent variables (or latent traits). Usually such latent traits are assumed to be random variables and a convenient distribution is assigned to them. A very common choice for such a distribution has been the standard normal. Recently, Azevedo et al. [Bayesian inference for a skew-normal IRT model under the centred parameterization, Comput. Stat. Data Anal. 55 (2011), pp. 353-365] proposed a skew-normal distribution under the centred parameterization (SNCP) as had been studied in [R. B. Arellano-Valle and A. Azzalini, The centred parametrization for the multivariate skew-normal distribution, J. Multivariate Anal. 99(7) (2008), pp. 1362-1382], to model the latent trait distribution. This approach allows one to represent any asymmetric behaviour concerning the latent trait distribution. Also, they developed a Metropolis-Hastings within the Gibbs sampling (MHWGS) algorithm based on the density of the SNCP. They showed that the algorithm recovers all parameters properly. Their results indicated that, in the presence of asymmetry, the proposed model and the estimation algorithm perform better than the usual model and estimation methods. Our main goal in this paper is to propose another type of MHWGS algorithm based on a stochastic representation (hierarchical structure) of the SNCP studied in [N. Henze, A probabilistic representation of the skew-normal distribution, Scand. J. Statist. 13 (1986), pp. 271-275]. Our algorithm has only one Metropolis-Hastings step, in opposition to the algorithm developed by Azevedo et al., which has two such steps. This not only makes the implementation easier but also reduces the number of proposal densities to be used, which can be a problem in the implementation of MHWGS algorithms, as can be seen in [R.J. Patz and B.W. Junker, A straightforward approach to Markov Chain Monte Carlo methods for item response models, J. Educ. Behav. Stat. 24(2) (1999), pp. 146-178; R. J. Patz and B. W. Junker, The applications and extensions of MCMC in IRT: Multiple item types, missing data, and rated responses, J. Educ. Behav. Stat. 24(4) (1999), pp. 342-366; A. Gelman, G.O. Roberts, and W.R. Gilks, Efficient Metropolis jumping rules, Bayesian Stat. 5 (1996), pp. 599-607]. Moreover, we consider a modified beta prior (which generalizes the one considered in [3]) and a Jeffreys prior for the asymmetry parameter. Furthermore, we study the sensitivity of such priors as well as the use of different kernel densities for this parameter. Finally, we assess the impact of the number of examinees, number of items and the asymmetry level on the parameter recovery. Results of the simulation study indicated that our approach performed equally as well as that in [3], in terms of parameter recovery, mainly using the Jeffreys prior. Also, they indicated that the asymmetry level has the highest impact on parameter recovery, even though it is relatively small. A real data analysis is considered jointly with the development of model fitting assessment tools. The results are compared with the ones obtained by Azevedo et al. The results indicate that using the hierarchical approach allows us to implement MCMC algorithms more easily, it facilitates diagnosis of the convergence and also it can be very useful to fit more complex skew IRT models.
Resumo:
This paper presents a robust stochastic model for the incorporation of natural features within data fusion algorithms. The representation combines Isomap, a non-linear manifold learning algorithm, with Expectation Maximization, a statistical learning scheme. The representation is computed offline and results in a non-linear, non-Gaussian likelihood model relating visual observations such as color and texture to the underlying visual states. The likelihood model can be used online to instantiate likelihoods corresponding to observed visual features in real-time. The likelihoods are expressed as a Gaussian Mixture Model so as to permit convenient integration within existing nonlinear filtering algorithms. The resulting compactness of the representation is especially suitable to decentralized sensor networks. Real visual data consisting of natural imagery acquired from an Unmanned Aerial Vehicle is used to demonstrate the versatility of the feature representation.