999 resultados para statistical efficiency
Resumo:
Complex diseases such as cancer result from multiple genetic changes and environmental exposures. Due to the rapid development of genotyping and sequencing technologies, we are now able to more accurately assess causal effects of many genetic and environmental factors. Genome-wide association studies have been able to localize many causal genetic variants predisposing to certain diseases. However, these studies only explain a small portion of variations in the heritability of diseases. More advanced statistical models are urgently needed to identify and characterize some additional genetic and environmental factors and their interactions, which will enable us to better understand the causes of complex diseases. In the past decade, thanks to the increasing computational capabilities and novel statistical developments, Bayesian methods have been widely applied in the genetics/genomics researches and demonstrating superiority over some regular approaches in certain research areas. Gene-environment and gene-gene interaction studies are among the areas where Bayesian methods may fully exert its functionalities and advantages. This dissertation focuses on developing new Bayesian statistical methods for data analysis with complex gene-environment and gene-gene interactions, as well as extending some existing methods for gene-environment interactions to other related areas. It includes three sections: (1) Deriving the Bayesian variable selection framework for the hierarchical gene-environment and gene-gene interactions; (2) Developing the Bayesian Natural and Orthogonal Interaction (NOIA) models for gene-environment interactions; and (3) extending the applications of two Bayesian statistical methods which were developed for gene-environment interaction studies, to other related types of studies such as adaptive borrowing historical data. We propose a Bayesian hierarchical mixture model framework that allows us to investigate the genetic and environmental effects, gene by gene interactions (epistasis) and gene by environment interactions in the same model. It is well known that, in many practical situations, there exists a natural hierarchical structure between the main effects and interactions in the linear model. Here we propose a model that incorporates this hierarchical structure into the Bayesian mixture model, such that the irrelevant interaction effects can be removed more efficiently, resulting in more robust, parsimonious and powerful models. We evaluate both of the 'strong hierarchical' and 'weak hierarchical' models, which specify that both or one of the main effects between interacting factors must be present for the interactions to be included in the model. The extensive simulation results show that the proposed strong and weak hierarchical mixture models control the proportion of false positive discoveries and yield a powerful approach to identify the predisposing main effects and interactions in the studies with complex gene-environment and gene-gene interactions. We also compare these two models with the 'independent' model that does not impose this hierarchical constraint and observe their superior performances in most of the considered situations. The proposed models are implemented in the real data analysis of gene and environment interactions in the cases of lung cancer and cutaneous melanoma case-control studies. The Bayesian statistical models enjoy the properties of being allowed to incorporate useful prior information in the modeling process. Moreover, the Bayesian mixture model outperforms the multivariate logistic model in terms of the performances on the parameter estimation and variable selection in most cases. Our proposed models hold the hierarchical constraints, that further improve the Bayesian mixture model by reducing the proportion of false positive findings among the identified interactions and successfully identifying the reported associations. This is practically appealing for the study of investigating the causal factors from a moderate number of candidate genetic and environmental factors along with a relatively large number of interactions. The natural and orthogonal interaction (NOIA) models of genetic effects have previously been developed to provide an analysis framework, by which the estimates of effects for a quantitative trait are statistically orthogonal regardless of the existence of Hardy-Weinberg Equilibrium (HWE) within loci. Ma et al. (2012) recently developed a NOIA model for the gene-environment interaction studies and have shown the advantages of using the model for detecting the true main effects and interactions, compared with the usual functional model. In this project, we propose a novel Bayesian statistical model that combines the Bayesian hierarchical mixture model with the NOIA statistical model and the usual functional model. The proposed Bayesian NOIA model demonstrates more power at detecting the non-null effects with higher marginal posterior probabilities. Also, we review two Bayesian statistical models (Bayesian empirical shrinkage-type estimator and Bayesian model averaging), which were developed for the gene-environment interaction studies. Inspired by these Bayesian models, we develop two novel statistical methods that are able to handle the related problems such as borrowing data from historical studies. The proposed methods are analogous to the methods for the gene-environment interactions on behalf of the success on balancing the statistical efficiency and bias in a unified model. By extensive simulation studies, we compare the operating characteristics of the proposed models with the existing models including the hierarchical meta-analysis model. The results show that the proposed approaches adaptively borrow the historical data in a data-driven way. These novel models may have a broad range of statistical applications in both of genetic/genomic and clinical studies.
Resumo:
Malgré des progrès constants en termes de capacité de calcul, mémoire et quantité de données disponibles, les algorithmes d'apprentissage machine doivent se montrer efficaces dans l'utilisation de ces ressources. La minimisation des coûts est évidemment un facteur important, mais une autre motivation est la recherche de mécanismes d'apprentissage capables de reproduire le comportement d'êtres intelligents. Cette thèse aborde le problème de l'efficacité à travers plusieurs articles traitant d'algorithmes d'apprentissage variés : ce problème est vu non seulement du point de vue de l'efficacité computationnelle (temps de calcul et mémoire utilisés), mais aussi de celui de l'efficacité statistique (nombre d'exemples requis pour accomplir une tâche donnée). Une première contribution apportée par cette thèse est la mise en lumière d'inefficacités statistiques dans des algorithmes existants. Nous montrons ainsi que les arbres de décision généralisent mal pour certains types de tâches (chapitre 3), de même que les algorithmes classiques d'apprentissage semi-supervisé à base de graphe (chapitre 5), chacun étant affecté par une forme particulière de la malédiction de la dimensionalité. Pour une certaine classe de réseaux de neurones, appelés réseaux sommes-produits, nous montrons qu'il peut être exponentiellement moins efficace de représenter certaines fonctions par des réseaux à une seule couche cachée, comparé à des réseaux profonds (chapitre 4). Nos analyses permettent de mieux comprendre certains problèmes intrinsèques liés à ces algorithmes, et d'orienter la recherche dans des directions qui pourraient permettre de les résoudre. Nous identifions également des inefficacités computationnelles dans les algorithmes d'apprentissage semi-supervisé à base de graphe (chapitre 5), et dans l'apprentissage de mélanges de Gaussiennes en présence de valeurs manquantes (chapitre 6). Dans les deux cas, nous proposons de nouveaux algorithmes capables de traiter des ensembles de données significativement plus grands. Les deux derniers chapitres traitent de l'efficacité computationnelle sous un angle différent. Dans le chapitre 7, nous analysons de manière théorique un algorithme existant pour l'apprentissage efficace dans les machines de Boltzmann restreintes (la divergence contrastive), afin de mieux comprendre les raisons qui expliquent le succès de cet algorithme. Finalement, dans le chapitre 8 nous présentons une application de l'apprentissage machine dans le domaine des jeux vidéo, pour laquelle le problème de l'efficacité computationnelle est relié à des considérations d'ingénierie logicielle et matérielle, souvent ignorées en recherche mais ô combien importantes en pratique.
Resumo:
We present an unsupervised learning algorithm that acquires a natural-language lexicon from raw speech. The algorithm is based on the optimal encoding of symbol sequences in an MDL framework, and uses a hierarchical representation of language that overcomes many of the problems that have stymied previous grammar-induction procedures. The forward mapping from symbol sequences to the speech stream is modeled using features based on articulatory gestures. We present results on the acquisition of lexicons and language models from raw speech, text, and phonetic transcripts, and demonstrate that our algorithm compares very favorably to other reported results with respect to segmentation performance and statistical efficiency.
Resumo:
Resiliência remete à habilidade do ser humano de demonstrar êxito diante das adversidades da vida, superá-las e, inclusive, ser fortalecido ou transformado por elas. O construto tem sido estudado há cerca de quarenta anos na Psiquiatria com foco em crianças, mas sua investigação é bem mais recente com a população adulta. No mundo da competição esportiva, os estudos são escassos. O contexto esportivo apresenta altos desafios e adversidades constantes que os atletas precisam vencer para cumprir as metas profissionais; por isso, convivem, muito frequentemente, com seus limites físicos e psicológicos. Assim, a resiliência pode ser um importante aspecto em suas vidas profissionais. Este estudo objetiva descrever os níveis de resiliência dos atletas no Basquetebol e identificar possíveis relações entre resiliência e alguns indicadores de eficiência estatística. Participaram da pesquisa, voluntariamente, 71 atletas profissionais adultos e atuantes da modalidade. As variáveis foram avaliadas por meio da Escala de Avaliação de Resiliência EAR, de um questionário de dados sociodemográficos e de índices de eficiência registrados pela Federação Paulista de Basquetebol. Os resultados de análises estatísticas descritivas e de correlações bivariadas de Pearson permitiram observar que os atletas demonstraram um alto nível de resiliência com destaque para a persistência diante das dificuldades e a aceitação positiva de mudanças. Os fatores que compõem a resiliência não apresentaram correlação significativa no tocante ao coeficiente de eficiência dos atletas. Ao comparar as médias por meio da análise de variância percebeu-se que os atletas que possuíam entre cinco e dez anos de profissão apresentaram melhores médias de coeficiente de eficiência. Os resultados revelam, ainda, que os atletas que atuam menos de 8 minutos na partida, em média, produzem menores índices de eficiência estatística e que os atletas que pertencem às equipes de resultados medianos na tabela de classificação tendem a apresentar maior percepção de competência pessoal que os atletas que atuam nas equipes mais mal colocadas. Os fatores de resiliência não se diferenciam em função da experiência dos atletas, nem do tempo em média que permanecem em quadra. Esses resultados revelam a necessidade de questionar se os indicadores de eficiência estatística seriam os critérios mais adequados para verificar o papel da resiliência na vida de atletas de Basquetebol e apontam para a necessidade de aumentar o número de estudos sobre a influência de características individuais no mundo dos esportes profissionais.
Resumo:
The preceding discussion and review of literature show that studies on gear selectivity have received great attention, while gear efficiency studies do not seem to have received equal consideration. In temperate waters, fishing industry is well organised and relatively large and well equipped vessels and gear are used for commercial fishing and the number of species are less; whereas in tropics particularly in India, small scale fishery dominates the scene and the fishery is multispecies operated upon by nmltigear. Therefore many of the problems faced in India may not exist in developed countries. Perhaps this would be the reason for the paucity of literature on the problems in estimation of relative efficiency. Much work has been carried out in estimating relative efficiency (Pycha, 1962; Pope, 1963; Gulland, 1967; Dickson, 1971 and Collins, 1979). The main subject of interest in the present thesis is an investigation into the problems in the comparison of fishing gears. especially in using classical test procedures with special reference to the prevailing fishing practices (that is. with reference to the catch data generated by the existing system). This has been taken up with a view to standardizing an approach for comparing the efficiency of fishing gear. Besides this, the implications of the terms ‘gear efficiency‘ and ‘gear selectivity‘ have been examined and based on the commonly used selectivity model (Holt, 1963), estimation of the ratio of fishing power of two gear has been considered. An attempt to determine the size of fish for which a gear is most efficient.has also been made. The work has been presented in eight chapters
Resumo:
This paper uses an output oriented Data Envelopment Analysis (DEA) measure of technical efficiency to assess the technical efficiencies of the Brazilian banking system. Four approaches to estimation are compared in order to assess the significance of factors affecting inefficiency. These are nonparametric Analysis of Covariance, maximum likelihood using a family of exponential distributions, maximum likelihood using a family of truncated normal distributions, and the normal Tobit model. The sole focus of the paper is on a combined measure of output and the data analyzed refers to the year 2001. The factors of interest in the analysis and likely to affect efficiency are bank nature (multiple and commercial), bank type (credit, business, bursary and retail), bank size (large, medium, small and micro), bank control (private and public), bank origin (domestic and foreign), and non-performing loans. The latter is a measure of bank risk. All quantitative variables, including non-performing loans, are measured on a per employee basis. The best fits to the data are provided by the exponential family and the nonparametric Analysis of Covariance. The significance of a factor however varies according to the model fit although it can be said that there is some agreements between the best models. A highly significant association in all models fitted is observed only for nonperforming loans. The nonparametric Analysis of Covariance is more consistent with the inefficiency median responses observed for the qualitative factors. The findings of the analysis reinforce the significant association of the level of bank inefficiency, measured by DEA residuals, with the risk of bank failure.
Resumo:
Includes bibliography
Resumo:
This article deals with the efficiency of fractional integration parameter estimators. This study was based on Monte Carlo experiments involving simulated stochastic processes with integration orders in the range]-1,1[. The evaluated estimation methods were classified into two groups: heuristics and semiparametric/maximum likelihood (ML). The study revealed that the comparative efficiency of the estimators, measured by the lesser mean squared error, depends on the stationary/non-stationary and persistency/anti-persistency conditions of the series. The ML estimator was shown to be superior for stationary persistent processes; the wavelet spectrum-based estimators were better for non-stationary mean reversible and invertible anti-persistent processes; the weighted periodogram-based estimator was shown to be superior for non-invertible anti-persistent processes.
Resumo:
The objective of this study was to compare, on study models and initial cephalograms, the efficiency of Class II malocclusion treatment with the pendulum appliance, and with two maxillary premolar extraction protocol. The sample consisted of 48 treated Class II malocclusion patients: group 1 comprised 22 patients (7 males, 15 females) treated with the pendulum appliance, with an initial mean age of 14.44 years and group 2, 26 patients (14 males, 12 females) treated with two maxillary premolar extractions at an initial mean age of 13.66 years. To compare the efficiency of each treatment protocol, the occlusal outcomes were evaluated on dental casts using the Peer Assessment Rating (PAR) Index and the treatment time (TT) of each group was calculated on clinical charts. The degree of treatment efficiency was calculated as the ratio between the percentage of occlusal improvement, evaluated through the PAR index, and TT. Statistical analysis was undertaken by means of t-tests. The findings demonstrated that the two maxillary premolar extraction protocol provided the occlusal outcomes in a shorter time (group 1: 45.7 months, group 2: 23.01 months) and, therefore, demonstrated greater treatment efficiency than the pendulum appliance.
Resumo:
The principal aim of this paper is to measure the amount by which the profit of a multi-input, multi-output firm deviates from maximum short-run profit, and then to decompose this profit gap into components that are of practical use to managers. In particular, our interest is in the measurement of the contribution of unused capacity, along with measures of technical inefficiency, and allocative inefficiency, in this profit gap. We survey existing definitions of capacity and, after discussing their shortcomings, we propose a new ray economic capacity measure that involves short-run profit maximisation, with the output mix held constant. We go on to describe how the gap between observed profit and maximum profit can be calculated and decomposed using linear programming methods. The paper concludes with an empirical illustration, involving data on 28 international airline companies. The empirical results indicate that these airline companies achieve profit levels which are on average US$815m below potential levels, and that 70% of the gap may be attributed to unused capacity. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Copyright 2013 Springer Netherlands.
Resumo:
A partir de las últimas décadas se ha impulsado el desarrollo y la utilización de los Sistemas de Información Geográficos (SIG) y los Sistemas de Posicionamiento Satelital (GPS) orientados a mejorar la eficiencia productiva de distintos sistemas de cultivos extensivos en términos agronómicos, económicos y ambientales. Estas nuevas tecnologías permiten medir variabilidad espacial de propiedades del sitio como conductividad eléctrica aparente y otros atributos del terreno así como el efecto de las mismas sobre la distribución espacial de los rendimientos. Luego, es posible aplicar el manejo sitio-específico en los lotes para mejorar la eficiencia en el uso de los insumos agroquímicos, la protección del medio ambiente y la sustentabilidad de la vida rural. En la actualidad, existe una oferta amplia de recursos tecnológicos propios de la agricultura de precisión para capturar variación espacial a través de los sitios dentro del terreno. El óptimo uso del gran volumen de datos derivado de maquinarias de agricultura de precisión depende fuertemente de las capacidades para explorar la información relativa a las complejas interacciones que subyacen los resultados productivos. La covariación espacial de las propiedades del sitio y el rendimiento de los cultivos ha sido estudiada a través de modelos geoestadísticos clásicos que se basan en la teoría de variables regionalizadas. Nuevos desarrollos de modelos estadísticos contemporáneos, entre los que se destacan los modelos lineales mixtos, constituyen herramientas prometedoras para el tratamiento de datos correlacionados espacialmente. Más aún, debido a la naturaleza multivariada de las múltiples variables registradas en cada sitio, las técnicas de análisis multivariado podrían aportar valiosa información para la visualización y explotación de datos georreferenciados. La comprensión de las bases agronómicas de las complejas interacciones que se producen a la escala de lotes en producción, es hoy posible con el uso de éstas nuevas tecnologías. Los objetivos del presente proyecto son: (l) desarrollar estrategias metodológicas basadas en la complementación de técnicas de análisis multivariados y geoestadísticas, para la clasificación de sitios intralotes y el estudio de interdependencias entre variables de sitio y rendimiento; (ll) proponer modelos mixtos alternativos, basados en funciones de correlación espacial de los términos de error que permitan explorar patrones de correlación espacial de los rendimientos intralotes y las propiedades del suelo en los sitios delimitados. From the last decades the use and development of Geographical Information Systems (GIS) and Satellite Positioning Systems (GPS) is highly promoted in cropping systems. Such technologies allow measuring spatial variability of site properties including electrical conductivity and others soil features as well as their impact on the spatial variability of yields. Therefore, site-specific management could be applied to improve the efficiency in the use of agrochemicals, the environmental protection, and the sustainability of the rural life. Currently, there is a wide offer of technological resources to capture spatial variation across sites within field. However, the optimum use of data coming from the precision agriculture machineries strongly depends on the capabilities to explore the information about the complex interactions underlying the productive outputs. The covariation between spatial soil properties and yields from georeferenced data has been treated in a graphical manner or with standard geostatistical approaches. New statistical modeling capabilities from the Mixed Linear Model framework are promising to deal with correlated data such those produced by the precision agriculture. Moreover, rescuing the multivariate nature of the multiple data collected at each site, several multivariate statistical approaches could be crucial tools for data analysis with georeferenced data. Understanding the basis of complex interactions at the scale of production field is now within reach the use of these new techniques. Our main objectives are: (1) to develop new statistical strategies, based on the complementarities of geostatistics and multivariate methods, useful to classify sites within field grown with grain crops and analyze the interrelationships of several soil and yield variables, (2) to propose mixed linear models to predict yield according spatial soil variability and to build contour maps to promote a more sustainable agriculture.