The Unsupervised Acquisition of a Lexicon from Continuous Speech
Data(s) |
20/10/2004
20/10/2004
18/01/1996
|
---|---|
Resumo |
We present an unsupervised learning algorithm that acquires a natural-language lexicon from raw speech. The algorithm is based on the optimal encoding of symbol sequences in an MDL framework, and uses a hierarchical representation of language that overcomes many of the problems that have stymied previous grammar-induction procedures. The forward mapping from symbol sequences to the speech stream is modeled using features based on articulatory gestures. We present results on the acquisition of lexicons and language models from raw speech, text, and phonetic transcripts, and demonstrate that our algorithm compares very favorably to other reported results with respect to segmentation performance and statistical efficiency. |
Formato |
27 p. 310643 bytes 555774 bytes application/postscript application/pdf |
Identificador |
AIM-1558 CBCL-129 |
Idioma(s) |
en_US |
Relação |
AIM-1558 CBCL-129 |
Palavras-Chave | #AI #MIT #Artificial Intelligence #induction #unsupervised learning #language acquisition #lexical acquisition #continuous speech |