961 resultados para state space model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces a State Space approach to explain the dynamics of rent growth, expected returns and Price-Rent ratio in housing markets. According to the present value model, movements in price to rent ratio should be matched by movements in expected returns and expected rent growth. The state space framework assume that both variables follow an autoregressive process of order one. The model is applied to the US and UK housing market, which yields series of the latent variables given the behaviour of the Price-Rent ratio. Resampling techniques and bootstrapped likelihood ratios show that expected returns tend to be highly persistent compared to rent growth. The Öltered expected returns is considered in a simple predictability of excess returns model with high statistical predictability evidenced for the UK. Overall, it is found that the present value model tends to have strong statistical predictability in the UK housing markets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces a State Space approach to explain the dynamics of rent growth, expected returns and Price-Rent ratio in housing markets. According to the present value model, movements in price to rent ratio should be matched by movements in expected returns and expected rent growth. The state space framework assume that both variables follow an autoregression process of order one. The model is applied to the US and UK housing market, which yields series of the latent variables given the behaviour of the Price-Rent ratio. Resampling techniques and bootstrapped likelihood ratios show that expected returns tend to be highly persistent compared to rent growth. The filtered expected returns is considered in a simple predictability of excess returns model with high statistical predictability evidence for the UK. Overall, it is found that the present value model tends to have strong statistical predictability in the UK housing markets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We model the large scale fading of wireless THz communications links deployed in a metropolitan area taking into account reception through direct line of sight, ground or wall reflection and diffraction. The movement of the receiver in the three dimensions is modelled by an autonomous dynamic linear system in state-space whereas the geometric relations involved in the attenuation and multi-path propagation of the electric field are described by a static non-linear mapping. A subspace algorithm in conjunction with polynomial regression is used to identify a Wiener model from time-domain measurements of the field intensity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computing the modal parameters of structural systems often requires processing data from multiple non-simultaneously recorded setups of sensors. These setups share some sensors in common, the so-called reference sensors, which are fixed for all measurements, while the other sensors change their position from one setup to the next. One possibility is to process the setups separately resulting in different modal parameter estimates for each setup. Then, the reference sensors are used to merge or glue the different parts of the mode shapes to obtain global mode shapes, while the natural frequencies and damping ratios are usually averaged. In this paper we present a new state space model that processes all setups at once. The result is that the global mode shapes are obtained automatically, and only a value for the natural frequency and damping ratio of each mode is estimated. We also investigate the estimation of this model using maximum likelihood and the Expectation Maximization algorithm, and apply this technique to simulated and measured data corresponding to different structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a time-domain stochastic system identification method based on Maximum Likelihood Estimation and the Expectation Maximization algorithm that is applied to the estimation of modal parameters from system input and output data. The effectiveness of this structural identification method is evaluated through numerical simulation. Modal parameters (eigenfrequencies, damping ratios and mode shapes) of the simulated structure are estimated applying the proposed identification method to a set of 100 simulated cases. The numerical results show that the proposed method estimates the modal parameters with precision in the presence of 20% measurement noise even. Finally, advantages and disadvantages of the method have been discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a periodic state space model to model monthly temperature data. Additionally, some issues are discussed, as the parameter estimation or the Kalman filter recursions adapted to a periodic model. This framework is applied to monthly long-term temperature time series of Lisbon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the MPC literature, stability is usually assured under the assumption that the state is measured. Since the closed-loop system may be nonlinear because of the constraints, it is not possible to apply the separation principle to prove global stability for the Output feedback case. It is well known that, a nonlinear closed-loop system with the state estimated via an exponentially converging observer combined with a state feedback controller can be unstable even when the controller is stable. One alternative to overcome the state estimation problem is to adopt a non-minimal state space model, in which the states are represented by measured past inputs and outputs [P.C. Young, M.A. Behzadi, C.L. Wang, A. Chotai, Direct digital and adaptative control by input-output, state variable feedback pole assignment, International journal of Control 46 (1987) 1867-1881; C. Wang, P.C. Young, Direct digital control by input-output, state variable feedback: theoretical background, International journal of Control 47 (1988) 97-109]. In this case, no observer is needed since the state variables can be directly measured. However, an important disadvantage of this approach is that the realigned model is not of minimal order, which makes the infinite horizon approach to obtain nominal stability difficult to apply. Here, we propose a method to properly formulate an infinite horizon MPC based on the output-realigned model, which avoids the use of an observer and guarantees the closed loop stability. The simulation results show that, besides providing closed-loop stability for systems with integrating and stable modes, the proposed controller may have a better performance than those MPC controllers that make use of an observer to estimate the current states. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The state-space approach is used to evaluate the relation between soil physical and chemical properties in an area cultivated with sugarcane. The experiment was carried out on a Rhodic Kandiudalf in Piracicaba, State of São Paulo, Brazil. Sugarcane was planted on an area of 0.21 ha i.e., in 15 rows 100 m long, spaced 1.4 m. Soil water content, soil organic matter, clay content and aggregate stability were sampled along a transect of 84 points, meter by meter. The state-space approach is used to evaluate how the soil water content is affected by itself and by soil organic matter, clay content, and aggregate stability of neighboring locations, in different combinations, aiming to contribute to a better understanding of the relation among these variables in the soil. Results show that soil water contents were successfully estimated by this approach. Best performances were found when the estimate of soil water content at locations i was related to soil water content, clay content and aggregate stability at locations i-1. Results also indicate that this state-space model using all series describes the soil water content better than any equivalent multiple regression equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El déficit existente a nuestro país con respecto a la disponibilidad de indicadores cuantitativos con los que llevar a término un análisis coyuntural de la actividad industrial regional ha abierto un debate centrado en el estudio de cuál es la metodología más adecuada para elaborar indicadores de estas características. Dentro de este marco, en este trabajo se presentan las principales conclusiones obtenidas en anteriores estudios (Clar, et. al., 1997a, 1997b y 1998) sobre la idoneidad de extender las metodologías que actualmente se están aplicando a las regiones españolas para elaborar indicadores de la actividad industrial mediante métodos indirectos. Estas conclusiones llevan a plantear una estrategia distinta a las que actualmente se vienen aplicando. En concreto, se propone (siguiendo a Israilevich y Kuttner, 1993) un modelo de variables latentes para estimar el indicador de la producción industrial regional. Este tipo de modelo puede especificarse en términos de un modelo statespace y estimarse mediante el filtro de Kalman. Para validar la metodología propuesta se estiman unos indicadores de acuerdo con ella para tres de las cuatro regiones españolas que disponen d¿un Índice de Producción Industrial (IPI) elaborado mediante el método directo (Andalucía, Asturias y el País Vasco) y se comparan con los IPIs publicados (oficiales). Los resultados obtenidos muestran el buen comportamiento de l¿estrategia propuesta, abriendo así una línea de trabajo con la que subsanar el déficit al que se hacía referencia anteriormente

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El déficit existente a nuestro país con respecto a la disponibilidad de indicadores cuantitativos con los que llevar a término un análisis coyuntural de la actividad industrial regional ha abierto un debate centrado en el estudio de cuál es la metodología más adecuada para elaborar indicadores de estas características. Dentro de este marco, en este trabajo se presentan las principales conclusiones obtenidas en anteriores estudios (Clar, et. al., 1997a, 1997b y 1998) sobre la idoneidad de extender las metodologías que actualmente se están aplicando a las regiones españolas para elaborar indicadores de la actividad industrial mediante métodos indirectos. Estas conclusiones llevan a plantear una estrategia distinta a las que actualmente se vienen aplicando. En concreto, se propone (siguiendo a Israilevich y Kuttner, 1993) un modelo de variables latentes para estimar el indicador de la producción industrial regional. Este tipo de modelo puede especificarse en términos de un modelo statespace y estimarse mediante el filtro de Kalman. Para validar la metodología propuesta se estiman unos indicadores de acuerdo con ella para tres de las cuatro regiones españolas que disponen d¿un Índice de Producción Industrial (IPI) elaborado mediante el método directo (Andalucía, Asturias y el País Vasco) y se comparan con los IPIs publicados (oficiales). Los resultados obtenidos muestran el buen comportamiento de l¿estrategia propuesta, abriendo así una línea de trabajo con la que subsanar el déficit al que se hacía referencia anteriormente

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is concerned with the state and parameter estimation in state space models. The estimation of states and parameters is an important task when mathematical modeling is applied to many different application areas such as the global positioning systems, target tracking, navigation, brain imaging, spread of infectious diseases, biological processes, telecommunications, audio signal processing, stochastic optimal control, machine learning, and physical systems. In Bayesian settings, the estimation of states or parameters amounts to computation of the posterior probability density function. Except for a very restricted number of models, it is impossible to compute this density function in a closed form. Hence, we need approximation methods. A state estimation problem involves estimating the states (latent variables) that are not directly observed in the output of the system. In this thesis, we use the Kalman filter, extended Kalman filter, Gauss–Hermite filters, and particle filters to estimate the states based on available measurements. Among these filters, particle filters are numerical methods for approximating the filtering distributions of non-linear non-Gaussian state space models via Monte Carlo. The performance of a particle filter heavily depends on the chosen importance distribution. For instance, inappropriate choice of the importance distribution can lead to the failure of convergence of the particle filter algorithm. In this thesis, we analyze the theoretical Lᵖ particle filter convergence with general importance distributions, where p ≥2 is an integer. A parameter estimation problem is considered with inferring the model parameters from measurements. For high-dimensional complex models, estimation of parameters can be done by Markov chain Monte Carlo (MCMC) methods. In its operation, the MCMC method requires the unnormalized posterior distribution of the parameters and a proposal distribution. In this thesis, we show how the posterior density function of the parameters of a state space model can be computed by filtering based methods, where the states are integrated out. This type of computation is then applied to estimate parameters of stochastic differential equations. Furthermore, we compute the partial derivatives of the log-posterior density function and use the hybrid Monte Carlo and scaled conjugate gradient methods to infer the parameters of stochastic differential equations. The computational efficiency of MCMC methods is highly depend on the chosen proposal distribution. A commonly used proposal distribution is Gaussian. In this kind of proposal, the covariance matrix must be well tuned. To tune it, adaptive MCMC methods can be used. In this thesis, we propose a new way of updating the covariance matrix using the variational Bayesian adaptive Kalman filter algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first two articles build procedures to simulate vector of univariate states and estimate parameters in nonlinear and non Gaussian state space models. We propose state space speci fications that offer more flexibility in modeling dynamic relationship with latent variables. Our procedures are extension of the HESSIAN method of McCausland[2012]. Thus, they use approximation of the posterior density of the vector of states that allow to : simulate directly from the state vector posterior distribution, to simulate the states vector in one bloc and jointly with the vector of parameters, and to not allow data augmentation. These properties allow to build posterior simulators with very high relative numerical efficiency. Generic, they open a new path in nonlinear and non Gaussian state space analysis with limited contribution of the modeler. The third article is an essay in commodity market analysis. Private firms coexist with farmers' cooperatives in commodity markets in subsaharan african countries. The private firms have the biggest market share while some theoretical models predict they disappearance once confronted to farmers cooperatives. Elsewhere, some empirical studies and observations link cooperative incidence in a region with interpersonal trust, and thus to farmers trust toward cooperatives. We propose a model that sustain these empirical facts. A model where the cooperative reputation is a leading factor determining the market equilibrium of a price competition between a cooperative and a private firm

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the recent decade, the request for structural health monitoring expertise increased exponentially in the United States. The aging issues that most of the transportation structures are experiencing can put in serious jeopardy the economic system of a region as well as of a country. At the same time, the monitoring of structures is a central topic of discussion in Europe, where the preservation of historical buildings has been addressed over the last four centuries. More recently, various concerns arose about security performance of civil structures after tragic events such the 9/11 or the 2011 Japan earthquake: engineers looks for a design able to resist exceptional loadings due to earthquakes, hurricanes and terrorist attacks. After events of such a kind, the assessment of the remaining life of the structure is at least as important as the initial performance design. Consequently, it appears very clear that the introduction of reliable and accessible damage assessment techniques is crucial for the localization of issues and for a correct and immediate rehabilitation. The System Identification is a branch of the more general Control Theory. In Civil Engineering, this field addresses the techniques needed to find mechanical characteristics as the stiffness or the mass starting from the signals captured by sensors. The objective of the Dynamic Structural Identification (DSI) is to define, starting from experimental measurements, the modal fundamental parameters of a generic structure in order to characterize, via a mathematical model, the dynamic behavior. The knowledge of these parameters is helpful in the Model Updating procedure, that permits to define corrected theoretical models through experimental validation. The main aim of this technique is to minimize the differences between the theoretical model results and in situ measurements of dynamic data. Therefore, the new model becomes a very effective control practice when it comes to rehabilitation of structures or damage assessment. The instrumentation of a whole structure is an unfeasible procedure sometimes because of the high cost involved or, sometimes, because it’s not possible to physically reach each point of the structure. Therefore, numerous scholars have been trying to address this problem. In general two are the main involved methods. Since the limited number of sensors, in a first case, it’s possible to gather time histories only for some locations, then to move the instruments to another location and replay the procedure. Otherwise, if the number of sensors is enough and the structure does not present a complicate geometry, it’s usually sufficient to detect only the principal first modes. This two problems are well presented in the works of Balsamo [1] for the application to a simple system and Jun [2] for the analysis of system with a limited number of sensors. Once the system identification has been carried, it is possible to access the actual system characteristics. A frequent practice is to create an updated FEM model and assess whether the structure fulfills or not the requested functions. Once again the objective of this work is to present a general methodology to analyze big structure using a limited number of instrumentation and at the same time, obtaining the most information about an identified structure without recalling methodologies of difficult interpretation. A general framework of the state space identification procedure via OKID/ERA algorithm is developed and implemented in Matlab. Then, some simple examples are proposed to highlight the principal characteristics and advantage of this methodology. A new algebraic manipulation for a prolific use of substructuring results is developed and implemented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The estimation of modal parameters of a structure from ambient measurements has attracted the attention of many researchers in the last years. The procedure is now well established and the use of state space models, stochastic system identification methods and stabilization diagrams allows to identify the modes of the structure. In this paper the contribution of each identified mode to the measured vibration is discussed. This modal contribution is computed using the Kalman filter and it is an indicator of the importance of the modes. Also the variation of the modal contribution with the order of the model is studied. This analysis suggests selecting the order for the state space model as the order that includes the modes with higher contribution. The order obtained using this method is compared to those obtained using other well known methods, like Akaike criteria for time series or the singular values of the weighted projection matrix in the Stochastic Subspace Identification method. Finally, both simulated and measured vibration data are used to show the practicability of the derived technique. Finally, it is important to remark that the method can be used with any identification method working in the state space model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modal analysis of a structural system consists on computing its vibrational modes. The experimental way to estimate these modes requires to excite the system with a measured or known input and then to measure the system output at different points using sensors. Finally, system inputs and outputs are used to compute the modes of vibration. When the system refers to large structures like buildings or bridges, the tests have to be performed in situ, so it is not possible to measure system inputs such as wind, traffic, . . .Even if a known input is applied, the procedure is usually difficult and expensive, and there are still uncontrolled disturbances acting at the time of the test. These facts led to the idea of computing the modes of vibration using only the measured vibrations and regardless of the inputs that originated them, whether they are ambient vibrations (wind, earthquakes, . . . ) or operational loads (traffic, human loading, . . . ). This procedure is usually called Operational Modal Analysis (OMA), and in general consists on to fit a mathematical model to the measured data assuming the unobserved excitations are realizations of a stationary stochastic process (usually white noise processes). Then, the modes of vibration are computed from the estimated model. The first issue investigated in this thesis is the performance of the Expectation- Maximization (EM) algorithm for the maximum likelihood estimation of the state space model in the field of OMA. The algorithm is described in detail and it is analysed how to apply it to vibration data. After that, it is compared to another well known method, the Stochastic Subspace Identification algorithm. The maximum likelihood estimate enjoys some optimal properties from a statistical point of view what makes it very attractive in practice, but the most remarkable property of the EM algorithm is that it can be used to address a wide range of situations in OMA. In this work, three additional state space models are proposed and estimated using the EM algorithm: • The first model is proposed to estimate the modes of vibration when several tests are performed in the same structural system. Instead of analyse record by record and then compute averages, the EM algorithm is extended for the joint estimation of the proposed state space model using all the available data. • The second state space model is used to estimate the modes of vibration when the number of available sensors is lower than the number of points to be tested. In these cases it is usual to perform several tests changing the position of the sensors from one test to the following (multiple setups of sensors). Here, the proposed state space model and the EM algorithm are used to estimate the modal parameters taking into account the data of all setups. • And last, a state space model is proposed to estimate the modes of vibration in the presence of unmeasured inputs that cannot be modelled as white noise processes. In these cases, the frequency components of the inputs cannot be separated from the eigenfrequencies of the system, and spurious modes are obtained in the identification process. The idea is to measure the response of the structure corresponding to different inputs; then, it is assumed that the parameters common to all the data correspond to the structure (modes of vibration), and the parameters found in a specific test correspond to the input in that test. The problem is solved using the proposed state space model and the EM algorithm. Resumen El análisis modal de un sistema estructural consiste en calcular sus modos de vibración. Para estimar estos modos experimentalmente es preciso excitar el sistema con entradas conocidas y registrar las salidas del sistema en diferentes puntos por medio de sensores. Finalmente, los modos de vibración se calculan utilizando las entradas y salidas registradas. Cuando el sistema es una gran estructura como un puente o un edificio, los experimentos tienen que realizarse in situ, por lo que no es posible registrar entradas al sistema tales como viento, tráfico, . . . Incluso si se aplica una entrada conocida, el procedimiento suele ser complicado y caro, y todavía están presentes perturbaciones no controladas que excitan el sistema durante el test. Estos hechos han llevado a la idea de calcular los modos de vibración utilizando sólo las vibraciones registradas en la estructura y sin tener en cuenta las cargas que las originan, ya sean cargas ambientales (viento, terremotos, . . . ) o cargas de explotación (tráfico, cargas humanas, . . . ). Este procedimiento se conoce en la literatura especializada como Análisis Modal Operacional, y en general consiste en ajustar un modelo matemático a los datos registrados adoptando la hipótesis de que las excitaciones no conocidas son realizaciones de un proceso estocástico estacionario (generalmente ruido blanco). Posteriormente, los modos de vibración se calculan a partir del modelo estimado. El primer problema que se ha investigado en esta tesis es la utilización de máxima verosimilitud y el algoritmo EM (Expectation-Maximization) para la estimación del modelo espacio de los estados en el ámbito del Análisis Modal Operacional. El algoritmo se describe en detalle y también se analiza como aplicarlo cuando se dispone de datos de vibraciones de una estructura. A continuación se compara con otro método muy conocido, el método de los Subespacios. Los estimadores máximo verosímiles presentan una serie de propiedades que los hacen óptimos desde un punto de vista estadístico, pero la propiedad más destacable del algoritmo EM es que puede utilizarse para resolver un amplio abanico de situaciones que se presentan en el Análisis Modal Operacional. En este trabajo se proponen y estiman tres modelos en el espacio de los estados: • El primer modelo se utiliza para estimar los modos de vibración cuando se dispone de datos correspondientes a varios experimentos realizados en la misma estructura. En lugar de analizar registro a registro y calcular promedios, se utiliza algoritmo EM para la estimación conjunta del modelo propuesto utilizando todos los datos disponibles. • El segundo modelo en el espacio de los estados propuesto se utiliza para estimar los modos de vibración cuando el número de sensores disponibles es menor que vi Resumen el número de puntos que se quieren analizar en la estructura. En estos casos es usual realizar varios ensayos cambiando la posición de los sensores de un ensayo a otro (múltiples configuraciones de sensores). En este trabajo se utiliza el algoritmo EM para estimar los parámetros modales teniendo en cuenta los datos de todas las configuraciones. • Por último, se propone otro modelo en el espacio de los estados para estimar los modos de vibración en la presencia de entradas al sistema que no pueden modelarse como procesos estocásticos de ruido blanco. En estos casos, las frecuencias de las entradas no se pueden separar de las frecuencias del sistema y se obtienen modos espurios en la fase de identificación. La idea es registrar la respuesta de la estructura correspondiente a diferentes entradas; entonces se adopta la hipótesis de que los parámetros comunes a todos los registros corresponden a la estructura (modos de vibración), y los parámetros encontrados en un registro específico corresponden a la entrada en dicho ensayo. El problema se resuelve utilizando el modelo propuesto y el algoritmo EM.