A Periodic State Space Model to Monthly Long-term Temperature Data


Autoria(s): Marco Costa; Magda Monteiro
Data(s)

05/07/2016

05/07/2016

01/06/2016

Resumo

This work presents a periodic state space model to model monthly temperature data. Additionally, some issues are discussed, as the parameter estimation or the Kalman filter recursions adapted to a periodic model. This framework is applied to monthly long-term temperature time series of Lisbon.

Identificador

978-84-608-8178-0

http://hdl.handle.net/10773/15849

Idioma(s)

eng

Relação

biometria.sgapeio.es/

Direitos

openAccess

Palavras-Chave #State space model #Kalman filter #periodic data #monthly temperature
Tipo

conferenceObject