978 resultados para sports video summarisation
Resumo:
In mobile videos, small viewing size and bitrate limitation often cause unpleasant viewing experiences, which is particularly important for fast-moving sports videos. For optimizing the overall user experience of viewing sports videos on mobile phones, this paper explores the benefits of emphasizing Region of Interest (ROI) by 1) zooming in and 2) enhancing the quality. The main goal is to measure the effectiveness of these two approaches and determine which one is more effective. To obtain a more comprehensive understanding of the overall user experience, the study considers user’s interest in video content and user’s acceptance of the perceived video quality, and compares the user experience in sports videos with other content types such as talk shows. The results from a user study with 40 subjects demonstrate that zooming and ROI-enhancement are both effective in improving the overall user experience with talk show and mid-shot soccer videos. However, for the full-shot scenes in soccer videos, only zooming is effective while ROI-enhancement has a negative effect. Moreover, user’s interest in video content directly affects not only the user experience and the acceptance of video quality, but also the effect of content type on the user experience. Finally, the overall user experience is closely related to the degree of the acceptance of video quality and the degree of the interest in video content. This study is valuable in exploiting effective approaches to improve user experience, especially in mobile sports video streaming contexts, whereby the available bandwidth is usually low or limited. It also provides further understanding of the influencing factors of user experience.
Resumo:
Viewer interests, evoked by video content, can potentially identify the highlights of the video. This paper explores the use of facial expressions (FE) and heart rate (HR) of viewers captured using camera and non-strapped sensor for identifying interesting video segments. The data from ten subjects with three videos showed that these signals are viewer dependent and not synchronized with the video contents. To address this issue, new algorithms are proposed to effectively combine FE and HR signals for identifying the time when viewer interest is potentially high. The results show that, compared with subjective annotation and match report highlights, ‘non-neutral’ FE and ‘relatively higher and faster’ HR is able to capture 60%-80% of goal, foul, and shot-on-goal soccer video events. FE is found to be more indicative than HR of viewer’s interests, but the fusion of these two modalities outperforms each of them.
Resumo:
Automatic video segmentation plays a vital role in sports videos annotation. This paper presents a fully automatic and computationally efficient algorithm for analysis of sports videos. Various methods of automatic shot boundary detection have been proposed to perform automatic video segmentation. These investigations mainly concentrate on detecting fades and dissolves for fast processing of the entire video scene without providing any additional feedback on object relativity within the shots. The goal of the proposed method is to identify regions that perform certain activities in a scene. The model uses some low-level feature video processing algorithms to extract the shot boundaries from a video scene and to identify dominant colours within these boundaries. An object classification method is used for clustering the seed distributions of the dominant colours to homogeneous regions. Using a simple tracking method a classification of these regions to active or static is performed. The efficiency of the proposed framework is demonstrated over a standard video benchmark with numerous types of sport events and the experimental results show that our algorithm can be used with high accuracy for automatic annotation of active regions for sport videos.
Resumo:
As the popularity of video as an information medium rises, the amount of video content that we produce and archive keeps growing. This creates a demand for shorter representations of videos in order to assist the task of video retrieval. The traditional solution is to let humans watch these videos and write textual summaries based on what they saw. This summarisation process, however, is time-consuming. Moreover, a lot of useful audio-visual information contained in the original video can be lost. Video summarisation aims to turn a full-length video into a more concise version that preserves as much information as possible. The problem of video summarisation is to minimise the trade-off between how concise and how representative a summary is. There are also usability concerns that need to be addressed in a video summarisation scheme. To solve these problems, this research aims to create an automatic video summarisation framework that combines and improves on existing video summarisation techniques, with the focus on practicality and user satisfaction. We also investigate the need for different summarisation strategies in different kinds of videos, for example news, sports, or TV series. Finally, we develop a video summarisation system based on the framework, which is validated by subjective and objective evaluation. The evaluation results shows that the proposed framework is effective for creating video skims, producing high user satisfaction rate and having reasonably low computing requirement. We also demonstrate that the techniques presented in this research can be used for visualising video summaries in the form web pages showing various useful information, both from the video itself and from external sources.
Resumo:
To sustain an ongoing rapid growth of video information, there is an emerging demand for a sophisticated content-based video indexing system. However, current video indexing solutions are still immature and lack of any standard. This doctoral consists of a research work based on an integrated multi-modal approach for sports video indexing and retrieval. By combining specific features extractable from multiple audio-visual modalities, generic structure and specific events can be detected and classified. During browsing and retrieval, users will benefit from the integration of high-level semantic and some descriptive mid-level features such as whistle and close-up view of player(s).
Resumo:
We present a novel approach to video summarisation that makes use of a Bag-of-visual-Textures (BoT) approach. Two systems are proposed, one based solely on the BoT approach and another which exploits both colour information and BoT features. On 50 short-term videos from the Open Video Project we show that our BoT and fusion systems both achieve state-of-the-art performance, obtaining an average F-measure of 0.83 and 0.86 respectively, a relative improvement of 9% and 13% when compared to the previous state-of-the-art. When applied to a new underwater surveillance dataset containing 33 long-term videos, the proposed system reduces the amount of footage by a factor of 27, with only minor degradation in the information content. This order of magnitude reduction in video data represents significant savings in terms of time and potential labour cost when manually reviewing such footage.
Resumo:
To detect and annotate the key events of live sports videos, we need to tackle the semantic gaps of audio-visual information. Previous work has successfully extracted semantic from the time-stamped web match reports, which are synchronized with the video contents. However, web and social media articles with no time-stamps have not been fully leveraged, despite they are increasingly used to complement the coverage of major sporting tournaments. This paper aims to address this limitation using a novel multimodal summarization framework that is based on sentiment analysis and players' popularity. It uses audiovisual contents, web articles, blogs, and commentators' speech to automatically annotate and visualize the key events and key players in a sports tournament coverage. The experimental results demonstrate that the automatically generated video summaries are aligned with the events identified from the official website match reports.
Resumo:
This paper presents a comprehensive study to find the most efficient bitrate requirement to deliver mobile video that optimizes bandwidth, while at the same time maintains good user viewing experience. In the study, forty participants were asked to choose the lowest quality video that would still provide for a comfortable and long-term viewing experience, knowing that higher video quality is more expensive and bandwidth intensive. This paper proposes the lowest pleasing bitrates and corresponding encoding parameters for five different content types: cartoon, movie, music, news and sports. It also explores how the lowest pleasing quality is influenced by content type, image resolution, bitrate, and user gender, prior viewing experience, and preference. In addition, it analyzes the trajectory of users’ progression while selecting the lowest pleasing quality. The findings reveal that the lowest bitrate requirement for a pleasing viewing experience is much higher than that of the lowest acceptable quality. Users’ criteria for the lowest pleasing video quality are related to the video’s content features, as well as its usage purpose and the user’s personal preferences. These findings can provide video providers guidance on what quality they should offer to please mobile users.
Resumo:
Temporal synchronization of multiple video recordings of the same dynamic event is a critical task in many computer vision applications e.g. novel view synthesis and 3D reconstruction. Typically this information is implied, since recordings are made using the same timebase, or time-stamp information is embedded in the video streams. Recordings using consumer grade equipment do not contain this information; hence, there is a need to temporally synchronize signals using the visual information itself. Previous work in this area has either assumed good quality data with relatively simple dynamic content or the availability of precise camera geometry. In this paper, we propose a technique which exploits feature trajectories across views in a novel way, and specifically targets the kind of complex content found in consumer generated sports recordings, without assuming precise knowledge of fundamental matrices or homographies. Our method automatically selects the moving feature points in the two unsynchronized videos whose 2D trajectories can be best related, thereby helping to infer the synchronization index. We evaluate performance using a number of real recordings and show that synchronization can be achieved to within 1 sec, which is better than previous approaches. Copyright 2013 ACM.
Resumo:
A video annotation system includes clips organization, feature description and pattern determination. This paper aims to present a system for basketball zone-defence detection. Particularly, a character-angle based descriptor for feature description is proposed. The well-performed experimental results in basketball zone-defence detection demonstrate that it is robust for both simulations and real-life cases, with less sensitivity to the distribution caused by local translation of subprime defenders. Such a framework can be easily applied to other team-work sports.
Resumo:
Improving performance in sports requires a better understanding of the perception-action loop employed by athletes. Because of its inherent limitations, video playback doesn't permit this type of in-depth analysis. Interactive, immersive virtual reality can overcome these limitations and foster a better understanding of sports performance.
Resumo:
The implementation of imagery and video feedback programs has become an important tool for aiding athletes in achieving peak performance (Halliwell, 1990). The purpose of the study was to determine the effect of strategic imagery training and video feedback on immediate performance. Participants were two university goaltenders. An alternating treatment design (ATD; Barlow & Hayes, 1979; Tawney & Gast, 1984) was employed. The strategies were investigated using three plays originating from the right side by a right-handed shooting defenceman from the blueline. The baseline condition consisted of six practices and was used to establish a stable and "ideal" measure of performance. The intervention conditions included alternating the use of strategic imagery (Cognitive general; Paivio, 1985) and video feedback. Both participants demonstrated an increase in the frequency of Cognitive general use. Specific and global performance measures were assessed to determine the relative effectiveness of the interventions. Poor inter-rater reliability resulted in the elimination of specific performance measures. Consequently, only the global measure (i.e., save percentage) was used in subsequent analyses. Visual inspection of participant save percentage was conducted to determine the benefits of the intervention. Strategic imagery training resulted in performance improvements for both participants. Video feedback facilitated performance for Participant 2, but not Participant 1. Results are discussed with respect to imagery and video interventions and the challenges associated with applied research. KEYWORDS: imagery, video, goaltenders, alternating treatment design.