891 resultados para speech segmentation
Resumo:
Speech is often a multimodal process, presented audiovisually through a talking face. One area of speech perception influenced by visual speech is speech segmentation, or the process of breaking a stream of speech into individual words. Mitchel and Weiss (2013) demonstrated that a talking face contains specific cues to word boundaries and that subjects can correctly segment a speech stream when given a silent video of a speaker. The current study expanded upon these results, using an eye tracker to identify highly attended facial features of the audiovisual display used in Mitchel and Weiss (2013). In Experiment 1, subjects were found to spend the most time watching the eyes and mouth, with a trend suggesting that the mouth was viewed more than the eyes. Although subjects displayed significant learning of word boundaries, performance was not correlated with gaze duration on any individual feature, nor was performance correlated with a behavioral measure of autistic-like traits. However, trends suggested that as autistic-like traits increased, gaze duration of the mouth increased and gaze duration of the eyes decreased, similar to significant trends seen in autistic populations (Boratston & Blakemore, 2007). In Experiment 2, the same video was modified so that a black bar covered the eyes or mouth. Both videos elicited learning of word boundaries that was equivalent to that seen in the first experiment. Again, no correlations were found between segmentation performance and SRS scores in either condition. These results, taken with those in Experiment, suggest that neither the eyes nor mouth are critical to speech segmentation and that perhaps more global head movements indicate word boundaries (see Graf, Cosatto, Strom, & Huang, 2002). Future work will elucidate the contribution of individual features relative to global head movements, as well as extend these results to additional types of speech tasks.
Resumo:
Speech is typically a multimodal phenomenon, yet few studies have focused on the exclusive contributions of visual cues to language acquisition. To address this gap, we investigated whether visual prosodic information can facilitate speech segmentation. Previous research has demonstrated that language learners can use lexical stress and pitch cues to segment speech and that learners can extract this information from talking faces. Thus, we created an artificial speech stream that contained minimal segmentation cues and paired it with two synchronous facial displays in which visual prosody was either informative or uninformative for identifying word boundaries. Across three familiarisation conditions (audio stream alone, facial streams alone, and paired audiovisual), learning occurred only when the facial displays were informative to word boundaries, suggesting that facial cues can help learners solve the early challenges of language acquisition.
Resumo:
The aim of this thesis is to investigate computerized voice assessment methods to classify between the normal and Dysarthric speech signals. In this proposed system, computerized assessment methods equipped with signal processing and artificial intelligence techniques have been introduced. The sentences used for the measurement of inter-stress intervals (ISI) were read by each subject. These sentences were computed for comparisons between normal and impaired voice. Band pass filter has been used for the preprocessing of speech samples. Speech segmentation is performed using signal energy and spectral centroid to separate voiced and unvoiced areas in speech signal. Acoustic features are extracted from the LPC model and speech segments from each audio signal to find the anomalies. The speech features which have been assessed for classification are Energy Entropy, Zero crossing rate (ZCR), Spectral-Centroid, Mean Fundamental-Frequency (Meanf0), Jitter (RAP), Jitter (PPQ), and Shimmer (APQ). Naïve Bayes (NB) has been used for speech classification. For speech test-1 and test-2, 72% and 80% accuracies of classification between healthy and impaired speech samples have been achieved respectively using the NB. For speech test-3, 64% correct classification is achieved using the NB. The results direct the possibility of speech impairment classification in PD patients based on the clinical rating scale.
Resumo:
Previous studies have shown that multiple ; birth children (MBC) are prone to early phonological ;difficulties and later literacy problems. However, to date, ;there has been no systematic long-term follow-up of MBC with phonological difficulties in the preschool years to determine whether these difficulties predict later literacy problems. In this study, 20 MBC whose early speech and language skills had been previously documented were compared to normative data and 20 singleton controls on tasks assessing phonological ; processing and literacy. The major findings indicated that MBC performed significantly more poorly on some tasks :df phonological processing than singleton controls did. Further, the early phonological skills of MBC (i.e., the number of inappropriate phonological processes used) correlated with poor performance on visual rhyme recognition, word repetition, and phoneme detection tasks 5 years later. There was no significant relationship between early biological factors (birth weight and gestation period) and performance on the phonological processing and literacy-related subtests. These results cl-support the hypothesis that MBC's early speech and language difficulties are not merely a transient phase;of; development, but a real disorder, with consequences for later academic achievement.
Resumo:
Dans de nombreux comportements qui reposent sur le rappel et la production de séquences, des groupements temporels émergent spontanément, créés par des délais ou des allongements. Ce « chunking » a été observé tant chez les humains que chez certains animaux et plusieurs auteurs l’attribuent à un processus général de chunking perceptif qui est conforme à la capacité de la mémoire à court terme. Cependant, aucune étude n’a établi comment ce chunking perceptif s’applique à la parole. Nous présentons une recension de la littérature qui fait ressortir certains problèmes critiques qui ont nui à la recherche sur cette question. C’est en revoyant ces problèmes qu’on propose une démonstration spécifique du chunking perceptif de la parole et de l’effet de ce processus sur la mémoire immédiate (ou mémoire de travail). Ces deux thèmes de notre thèse sont présentés séparément dans deux articles. Article 1 : The perceptual chunking of speech: a demonstration using ERPs Afin d’observer le chunking de la parole en temps réel, nous avons utilisé un paradigme de potentiels évoqués (PÉ) propice à susciter la Closure Positive Shift (CPS), une composante associée, entre autres, au traitement de marques de groupes prosodiques. Nos stimuli consistaient en des énoncés et des séries de syllabes sans sens comprenant des groupes intonatifs et des marques de groupements temporels qui pouvaient concorder, ou non, avec les marques de groupes intonatifs. Les analyses démontrent que la CPS est suscitée spécifiquement par les allongements marquant la fin des groupes temporels, indépendamment des autres variables. Notons que ces marques d’allongement, qui apparaissent universellement dans la langue parlée, créent le même type de chunking que celui qui émerge lors de l’apprentissage de séquences par des humains et des animaux. Nos résultats appuient donc l’idée que l’auditeur chunk la parole en groupes temporels et que ce chunking perceptif opère de façon similaire avec des comportements verbaux et non verbaux. Par ailleurs, les observations de l’Article 1 remettent en question des études où on associe la CPS au traitement de syntagmes intonatifs sans considérer les effets de marques temporels. Article 2 : Perceptual chunking and its effect on memory in speech processing:ERP and behavioral evidence Nous avons aussi observé comment le chunking perceptif d’énoncés en groupes temporels de différentes tailles influence la mémoire immédiate d’éléments entendus. Afin d’observer ces effets, nous avons utilisé des mesures comportementales et des PÉ, dont la composante N400 qui permettait d’évaluer la qualité de la trace mnésique d’éléments cibles étendus dans des groupes temporels. La modulation de l’amplitude relative de la N400 montre que les cibles présentées dans des groupes de 3 syllabes ont bénéficié d’une meilleure mise en mémoire immédiate que celles présentées dans des groupes plus longs. D’autres mesures comportementales et une analyse de la composante P300 ont aussi permis d’isoler l’effet de la position du groupe temporel (dans l’énoncé) sur les processus de mise en mémoire. Les études ci-dessus sont les premières à démontrer le chunking perceptif de la parole en temps réel et ses effets sur la mémoire immédiate d’éléments entendus. Dans l’ensemble, nos résultats suggèrent qu’un processus général de chunking perceptif favorise la mise en mémoire d’information séquentielle et une interprétation de la parole « chunk par chunk ».
Resumo:
The first and second authors would like to thank the support of the PhD grants with references SFRH/BD/28817/2006 and SFRH/PROTEC/49517/2009, respectively, from Fundação para a Ciência e Tecnol ogia (FCT). This work was partially done in the scope of the project “Methodologies to Analyze Organs from Complex Medical Images – Applications to Fema le Pelvic Cavity”, wi th reference PTDC/EEA- CRO/103320/2008, financially supported by FCT.
Resumo:
Sketches are commonly used in the early stages of design. Our previous system allows users to sketch mechanical systems that the computer interprets. However, some parts of the mechanical system might be too hard or too complicated to express in the sketch. Adding speech recognition to create a multimodal system would move us toward our goal of creating a more natural user interface. This thesis examines the relationship between the verbal and sketch input, particularly how to segment and align the two inputs. Toward this end, subjects were recorded while they sketched and talked. These recordings were transcribed, and a set of rules to perform segmentation and alignment was created. These rules represent the knowledge that the computer needs to perform segmentation and alignment. The rules successfully interpreted the 24 data sets that they were given.
Resumo:
Traditional Text-To-Speech (TTS) systems have been developed using especially-designed non-expressive scripted recordings. In order to develop a new generation of expressive TTS systems in the Simple4All project, real recordings from the media should be used for training new voices with a whole new range of speaking styles. However, for processing this more spontaneous material, the new systems must be able to deal with imperfect data (multi-speaker recordings, background and foreground music and noise), filtering out low-quality audio segments and creating mono-speaker clusters. In this paper we compare several architectures for combining speaker diarization and music and noise detection which improve the precision and overall quality of the segmentation.
Resumo:
The article describes the method of preliminary segmentation of a speech signal with wavelet transformation use, consisting of two stages. At the first stage there is an allocation of sibilants and pauses, at the second – the further segmentation of the rest signal parts.
Resumo:
The long term goal of this research is to develop a program able to produce an automatic segmentation and categorization of textual sequences into discourse types. In this preliminary contribution, we present the construction of an algorithm which takes a segmented text as input and attempts to produce a categorization of sequences, such as narrative, argumentative, descriptive and so on. Also, this work aims at investigating a possible convergence between the typological approach developed in particular in the field of text and discourse analysis in French by Adam (2008) and Bronckart (1997) and unsupervised statistical learning.
Resumo:
Speaker diarization is the process of sorting speeches according to the speaker. Diarization helps to search and retrieve what a certain speaker uttered in a meeting. Applications of diarization systemsextend to other domains than meetings, for example, lectures, telephone, television, and radio. Besides, diarization enhances the performance of several speech technologies such as speaker recognition, automatic transcription, and speaker tracking. Methodologies previously used in developing diarization systems are discussed. Prior results and techniques are studied and compared. Methods such as Hidden Markov Models and Gaussian Mixture Models that are used in speaker recognition and other speech technologies are also used in speaker diarization. The objective of this thesis is to develop a speaker diarization system in meeting domain. Experimental part of this work indicates that zero-crossing rate can be used effectively in breaking down the audio stream into segments, and adaptive Gaussian Models fit adequately short audio segments. Results show that 35 Gaussian Models and one second as average length of each segment are optimum values to build a diarization system for the tested data. Uniting the segments which are uttered by same speaker is done in a bottom-up clustering by a newapproach of categorizing the mixture weights.
Resumo:
We present an unsupervised learning algorithm that acquires a natural-language lexicon from raw speech. The algorithm is based on the optimal encoding of symbol sequences in an MDL framework, and uses a hierarchical representation of language that overcomes many of the problems that have stymied previous grammar-induction procedures. The forward mapping from symbol sequences to the speech stream is modeled using features based on articulatory gestures. We present results on the acquisition of lexicons and language models from raw speech, text, and phonetic transcripts, and demonstrate that our algorithm compares very favorably to other reported results with respect to segmentation performance and statistical efficiency.
Resumo:
This paper is a review of a study on perception and comprehension of speech using syntactic, visual and acoustic information.