729 resultados para sorption


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Producing cost-competitive small and medium-sized solar cooling systems is currently a significant challenge. Due to system complexity, extensive engineering, design and equipment costs; the installation costs of solar thermal cooling systems are prohibitively high. In efforts to overcome these limitations, a novel sorption heat pump module has been developed and directly integrated into a solar thermal collector. The module comprises a fully encapsulated sorption tube containing hygroscopic salt sorbent and water as a refrigerant, sealed under vacuum with no moving parts. A 5.6m2 aperture area outdoor laboratory-scale system of sorption module integrated solar collectors was installed in Stockholm, Sweden and evaluated under constant re-cooling and chilled fluid return temperatures in order to assess collector performance. Measured average solar cooling COP was 0.19 with average cooling powers between 120 and 200 Wm-2 collector aperture area. It was observed that average collector cooling power is constant at daily insolation levels above 3.6 kWhm-2 with the cooling energy produced being proportional to solar insolation. For full evaluation of an integrated sorption collector solar heating and cooling system, under the umbrella of a European Union project for technological innovation, a 180 m2 large-scale demonstration system has been installed in Karlstad, Sweden. Results from the installation commissioned in summer 2014 with non-optimised control strategies showed average electrical COP of 10.6 and average cooling powers between 140 and 250 Wm-2 collector aperture area. Optimisation of control strategies, heat transfer fluid flows through the collectors and electrical COP will be carried out in autumn 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In water repellent soil, Cr, Pb and Cu showed higher adsorption intensities than Zn, Cd and Ni did. Soil water repellency is much more widespread than formerly thought. In order to promote fertility and productivity, the irrigation of recycled water onto water repellent soil may be an applied technology to be used in some areas of Southern Australia. Therefore, heavy metals in recycled water potentially enter into the soil. The competitive sorption and retention capacity of heavy metals in soil are important to be determined, especially considering the special geochemical origin of water repellent soil that was caused by waxes on or between the soil particles. Batch equilibrium sorption experiments on Cd, Cr, Cu, Ni, Pb and Zn in their typical proportion in recycled water were conducted in water repellent soil. The sorption intensity, sorption isotherm in the experiments together showed that Cr, Pb and Cu have higher sorption intensity than those of Zn, Ni and Cd in the competitive system. The risk assessment for the application of recycled water onto water repellent soil is definitely necessary, especially for the metal cations with relatively weak sorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper (Cu) is an important heavy metal to be considered in soil contamination, because high concentrations of copper in soil produce toxic effects and may accumulate in plant tissues. In Australia's oldest sewage irrigation farm, located in Werribee, Victoria, soil in the land filtration area is contaminated by Cu. However, Cu content in herbage tissues is in the normal range and has been trending downward since 1979. Therefore, studies on the sorption capacity and sequential extraction of Cu in soil at the Werribee Farm is of significance, not only for better understanding the mechanism of transport, chemical processes, and plant uptake of Cu, but also in providing information for the practical management of sewage farm soils. Methods of combining sorption isotherms with sequential extraction procedures were adopted, and the results showed that the soil in the land filtration area at Werribee Farm has a high sorption capacity for Cu, and distribution coefficients, Kf of Cu, were 629 L kg-1 in surface soils (0-20 cm) and 335 L kg-1 in subsurface soils (20-40 cm). The sequential extraction fractions demonstrate that exchangeable and carbonate fractions are very low, only comprising 3.49 to 5.49% of total copper. The other fractions are also discussed. This characteristic of Cu in soil is related to the low concentration of Cu in plant tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work focused on the characterisation of wool powders and their sorption capacity for dyes and metal ions. It provides new information to the field of wool and the potential use of wool to sorb contaminants from wastewater. It also suggests a new use for inferior and waste wool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research developed a milling technology for ultrafine silk particles and designed novel biocompatible and biodegradable silk composites for repairing hard tissue defects. It also demonstrated high and rapid reversible ion binding properties of silk particles and thereby opened up their application opportunities as advanced green sorbents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The feasibility of cassava peel waste for Ni-sorption is evaluated in this work. The biosorbents are characterized by Boehm titration, Fourier transform-infra red (FTIR) spectroscopy, Nitrogen sorption, scanning electron microscopy-energy dispersive X-ray (SEM-EDX) analysis (e.g. elemental mapping) and X-ray photoelectron spectroscopy (XPS). Adsorption experiments are performed in batch mode at 30 °C (303.15 K), 45 °C (318.15 K) and 60 °C (333.15 K). The performance of several temperature dependence forms of isotherm models e.g. Langmuir, Freundlich, Sips and Toth to represent the adsorption equilibrium data is evaluated and contrasted. Sips model demonstrates the best fitting with the maximum uptake capacity for Ni(II) ions of 57 mg/g (0.971 mmol/g) at pH 4.5. For kinetic data correlation, pseudo-second order model shows the best representation. The chemisorption mechanism and thermodynamics aspect are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports an investigation on the effect of thermal activation of kaolinite. It is well known that during calcinations (400-650 degrees C), kaolinite loses the OH lattice water and is transformed into metakaolinite or amorphous material. Arsenic is trace element that is toxic to animals including humans. The adsorption of arsenic on kaolinite was investigated at varying pH and thermal pretreatment. Calcination of sample is carried out at 650 degrees C for 3 h. The decomposition of kaolinite is recorded using methods of thermal analysis. The resultant product is identified by XRD. Laboratory experiments were conducted examining the effect of arsenic by thermally modified kaolinite. The Langmuir isotherm was used to describe arsenite and arsenate sorption by the calcined kaolinite. The equilibrium parameters used were based on experimental data obtained for the dynamic adsorption process of arsenic. Removal of arsenate using natural kaolinite was satisfactory, whereas arsenic was not removed by adsorption with thermally modified kaolinite. Moreover, the adsorption of arsenic by kaolinite and metakaolinite decreases with increasing pH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The organo-clay used in this work was prepared from a Na-montmorillonite (Wyoming-USA deposit) by treatment with water solution of hexadecyltrimethylammonium cations. As organo-clays exhibit strong sorptive capabilities for organic molecules, 2-mercapto-5-amino-1,3,4-thiadiazole organofunctional groups, with potential usefulness in chemical analysis, were incorporated on its solid surface. The physically adsorbed reagent did not present any restrictions in coordinating with several metal ions on the surface. The resultant organo-clay complex exhibited strong sorptive capability for removing mercury ions from water in which other metals and ions were also present. The purpose of this work is to study the selective separation of mercury(II) from aqueous solution using the organo-clay complex, measured by batch and chromatographic column techniques, and its application as preconcentration agent in a chemically modified carbon paste electrode for determination of mercury(II) in aqueous solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the influence of microwave disinfection on the strength of intact and relined denture bases. Water sorption and solubility were also evaluated. A heat-polymerized acrylic resin (Lucitone 550) was used to construct 4-mm-thick (n = 40) and 2-mm-thick (n = 160) denture bases. Denture bases (2mm) were relined with an autopolymerizing resin (Tokuso Rebase Fast, Ufi Gel Hard, Kooliner, or New Truliner). Specimens were divided into four groups (n = 10): without treatment, one or seven cycles of microwave disinfection (650 W for 6 min), and water storage at 37 degrees C for 7 days. Specimens were vertically loaded (5 mm/min) until failure. Disc-shaped specimens (50 min x 0.5 mm) were fabricated (n = 10) to evaluate water sorption and solubility. Data on maximum fracture load (N), deflection (%), and solubility (%) were analyzed by two-way analysis of variance and Student-Newman-Keuls tests (alpha = 0.05). One cycle of microwave disinfection decreased the deflection at fracture and fracture energy of Tokuso Rebase Fast and New Truliner specimens. The strength of denture bases microwaved daily for 7 days was similar to the strength of those immersed in water for 7 days. Microwave disinfection increased the water sorption of all materials and affected the solubility of the reline materials. (C) 2007 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silica gel chemically modified with 2-aminotiazole groups (SiAT), was used for preconcentration of cupper, zinc, nickel and iron from gasoline, normally used as a engine fuel. Surface characteristics and surface area of the silica gel were obtained before and after chemical modification using FT-IR, Kjeldhal and surface area analysis (B.E.T.). The retention and recovery of the analyte elements were studied by applying batch and column techniques. The experimental parameters, such as shaking time in batch technique, flow rate and concentration of the eluent (HCl-0.25-2.00 mol 1(-1)) and the amount of silica, on retention and elution, have been investigated. Detection limits of the method for cupper, iron, nickel and zinc are 0.8, 3, 2 and 0.1 mug 1(-1), respectively. The sorption-desorption of the studied metal ions made possible the development of a preconcentration method for metal ions at trace level in gasoline using flame AAS for their quantification. (C) 2004 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)