1000 resultados para soil cartography
Resumo:
Since different pedologists will draw different soil maps of a same area, it is important to compare the differences between mapping by specialists and mapping techniques, as for example currently intensively discussed Digital Soil Mapping. Four detailed soil maps (scale 1:10.000) of a 182-ha sugarcane farm in the county of Rafard, São Paulo State, Brazil, were compared. The area has a large variation of soil formation factors. The maps were drawn independently by four soil scientists and compared with a fifth map obtained by a digital soil mapping technique. All pedologists were given the same set of information. As many field expeditions and soil pits as required by each surveyor were provided to define the mapping units (MUs). For the Digital Soil Map (DSM), spectral data were extracted from Landsat 5 Thematic Mapper (TM) imagery as well as six terrain attributes from the topographic map of the area. These data were summarized by principal component analysis to generate the map designs of groups through Fuzzy K-means clustering. Field observations were made to identify the soils in the MUs and classify them according to the Brazilian Soil Classification System (BSCS). To compare the conventional and digital (DSM) soil maps, they were crossed pairwise to generate confusion matrices that were mapped. The categorical analysis at each classification level of the BSCS showed that the agreement between the maps decreased towards the lower levels of classification and the great influence of the surveyor on both the mapping and definition of MUs in the soil map. The average correspondence between the conventional and DSM maps was similar. Therefore, the method used to obtain the DSM yielded similar results to those obtained by the conventional technique, while providing additional information about the landscape of each soil, useful for applications in future surveys of similar areas.
Resumo:
Morphological, physical and chemical studies were carried out on soils of Mount Bambouto, a volcanic mountain of the West Cameroon highland. These studies show that the soils of this region can be divided into seven groups according to Soils Taxonomy USA [Soil taxonomy: a basic system of soil classification for making and interpreting soils surveys: USDA Agriculture Handbook 436: Washington, DC, US Government Pronting Office, 1975, 754]: lithic dystrandept soils, typical dystrandept soils, oxic dystrandept soils, typical haplohumox soils, typical kandiudox soils, tropopsamment soils and umbriaquox soils. A soils map of this region at scale 1:50,000 has been drawn up, using the seven soils groups above as soil cartography units. These soils are organised into of three main categories: soils with andic characteristics in the upper region of the mountain (lithic dystrandept soils, typical dystrandept soils and oxic dystrandept soils); ferrallitic soils in the lower part of the mountain (typical haplohumox soils and typical kandiudox soils) and imperfectly developed soils (tropopsamment soils and umbraquox soils).
Resumo:
Soil use for the development of activities as agriculture and livestock has been causing great alterations in the environment, mainly when these are practiced intensively, disrespecting the fragility and aptitude of the natural resources. Therefore, it is essential that the planning of the agricultural activities is done, taking into consideration the several environmental criteria involved in the decision-making process. Thus, this study aimed to analyze the agricultural aptitude classes of lands from a watershed through geographical information system (GIS). The Arroio Ajuricaba watershed is located in the Municipality of Marechal Cândido Rondon - PR among the coordinates UTM 787309m E and 793892m E; 7275026m N and 7281310m N, in the Spindle 21, presenting an area of 1681ha. Soil maps, in semi detail scale, was the digital cartographic base used. The results allowed to conclude that 42.41% of the basin presented a good aptitude for farming in handling level of high technology (handling level C), regular aptitude for B, and restricted aptitude for A [class 1(a)bC] and that 12% of the area had regular aptitude for farming in the three handling levels (class 1abc). The watershed lands (14.24%) presented regular aptitude for farming in handling level C, restricted aptitude for B, and inapt for A [class of aptitude 2(b)c]; 15.85% presented good aptitude for planted pasture (class 4P) and 12.21% were considered without aptitude for agricultural use (class 6). We can say that 71.94% of the lands has aptitude for farming, although they present different degrees of limitations that request different treatments for its conservation.
Resumo:
Map units directly related to properties of soil-landscape are generated by local soil classes. Therefore to take into consideration the knowledge of farmers is essential to automate the procedure. The aim of this study was to map local soil classes by computer-assisted cartography (CAC), using several combinations of topographic properties produced by GIS (digital elevation model, aspect, slope, and profile curvature). A decision tree was used to find the number of topographic properties required for digital cartography of the local soil classes. The maps produced were evaluated based on the attributes of map quality defined as precision and accuracy of the CAC-based maps. The evaluation was carried out in Central Mexico using three maps of local soil classes with contrasting landscape and climatic conditions (desert, temperate, and tropical). In the three areas the precision (56 %) of the CAC maps based on elevation as topographical feature was higher than when based on slope, aspect and profile curvature. The accuracy of the maps (boundary locations) was however low (33 %), in other words, further research is required to improve this indicator.
Resumo:
Mine drainage is an important environmental disturbance that affects the chemical and biological components in natural resources. However, little is known about the effects of neutral mine drainage on the soil bacteria community. Here, a high-throughput 16S rDNA pyrosequencing approach was used to evaluate differences in composition, structure, and diversity of bacteria communities in samples from a neutral drainage channel, and soil next to the channel, at the Sossego copper mine in Brazil. Advanced statistical analyses were used to explore the relationships between the biological and chemical data. The results showed that the neutral mine drainage caused changes in the composition and structure of the microbial community, but not in its diversity. The Deinococcus/Thermus phylum, especially the Meiothermus genus, was in large part responsible for the differences between the communities, and was positively associated with the presence of copper and other heavy metals in the environmental samples. Other important parameters that influenced the bacterial diversity and composition were the elements potassium, sodium, nickel, and zinc, as well as pH. The findings contribute to the understanding of bacterial diversity in soils impacted by neutral mine drainage, and demonstrate that heavy metals play an important role in shaping the microbial population in mine environments.
Resumo:
Mining activities pose severe environmental risks worldwide, generating extreme pH conditions and high concentrations of heavy metals, which can have major impacts on the survival of organisms. In this work, pyrosequencing of the V3 region of the 16S rDNA was used to analyze the bacterial communities in soil samples from a Brazilian copper mine. For the analysis, soil samples were collected from the slopes (geotechnical structures) and the surrounding drainage of the Sossego mine (comprising the Sossego and Sequeirinho deposits). The results revealed complex bacterial diversity, and there was no influence of deposit geographic location on the composition of the communities. However, the environment type played an important role in bacterial community divergence; the composition and frequency of OTUs in the slope samples were different from those of the surrounding drainage samples, and Acidobacteria, Chloroflexi, Firmicutes, and Gammaproteobacteria were responsible for the observed difference. Chemical analysis indicated that both types of sample presented a high metal content, while the amounts of organic matter and water were higher in the surrounding drainage samples. Non-metric multidimensional scaling (N-MDS) analysis identified organic matter and water as important distinguishing factors between the bacterial communities from the two types of mine environment. Although habitat-specific OTUs were found in both environments, they were more abundant in the surrounding drainage samples (around 50 %), and contributed to the higher bacterial diversity found in this habitat. The slope samples were dominated by a smaller number of phyla, especially Firmicutes. The bacterial communities from the slope and surrounding drainage samples were different in structure and composition, and the organic matter and water present in these environments contributed to the observed differences.
Resumo:
Silver nanoparticles have attracted considerable attention due to their beneficial properties. But toxicity issues associated with them are also rising. The reports in the past suggested health hazards of silver nanoparticles at the cellular, molecular, or whole organismal level in eukaryotes. Whereas, there is also need to examine the exposure effects of silver nanoparticle to the microbes, which are beneficial to humans as well as environment. The available literature suggests the harmful effects of physically and chemically synthesised silver nanoparticles. The toxicity of biogenically synthesized nanoparticles has been less studied than physically and chemically synthesised nanoparticles. Hence, there is a greater need to study the toxic effects of biologically synthesised silver nanoparticles in general and mycosynthesized nanoparticles in particular. In the present study, attempts have been made to assess the risk associated with the exposure of mycosynthesized silver nanoparticles on a beneficial soil microbe Pseudomonas putida. KT2440. The study demonstrates mycosynthesis of silver nanoparticles and their characterisation by UV-vis spectrophotometry, FTIR, X-ray diffraction, nanosight LM20 - a particle size distribution analyzer and TEM. Silver nanoparticles obtained herein were found to exert the hazardous effect at the concentration of 0.4μg/ml, which warrants further detailed investigations concerning toxicity.
Resumo:
Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the (15)N:(14)N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in (15)N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ(15)N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ(15)N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.
Mineral Nutrition Of Campos Rupestres Plant Species On Contrasting Nutrient-impoverished Soil Types.
Resumo:
In Brazil, the campos rupestres occur over the Brazilian shield, and are characterized by acidic nutrient-impoverished soils, which are particularly low in phosphorus (P). Despite recognition of the campos rupestres as a global biodiversity hotspot, little is known about the diversity of P-acquisition strategies and other aspects of plant mineral nutrition in this region. To explore nutrient-acquisition strategies and assess aspects of plant P nutrition, we measured leaf P and nitrogen (N) concentrations, characterized root morphology and determined the percentage arbuscular mycorrhizal (AM) colonization of 50 dominant species in six communities, representing a gradient of soil P availability. Leaf manganese (Mn) concentration was measured as a proxy for carboxylate-releasing strategies. Communities on the most P-impoverished soils had the highest proportion of nonmycorrhizal (NM) species, the lowest percentage of mycorrhizal colonization, and the greatest diversity of root specializations. The large spectrum of leaf P concentration and variation in root morphologies show high functional diversity for nutritional strategies. Higher leaf Mn concentrations were observed in NM compared with AM species, indicating that carboxylate-releasing P-mobilizing strategies are likely to be present in NM species. The soils of the campos rupestres are similar to the most P-impoverished soils in the world. The prevalence of NM strategies indicates a strong global functional convergence in plant mineral nutrition strategies among severely P-impoverished ecosystems.
Resumo:
Application of calcium silicate (SiCa) as soil acidity corrective was evaluated in a Rhodic Hapludox soil with palisade grass conducted under pasture rotation system with different grazing intensities. Experimental design was complete randomized blocks with four grazing intensities - grazing intensities were imposed by forage supply (50, 100, 150 and 200 kg t-1 of DM per LW) - in experimental plots with four replicates and, in the subplots, with seven doses of calcium silicate combined with lime: 0+0, 2+0, 4+0, 6+0, 2+4, 4+2 and 0+6 t ha-1, respectively. In the soil, it was evaluated the effect of four levels of calcium silicate (0, 2, 4 and 6 t ha-1) at 45, 90, and 365 days at three depths (0-10, 10-20 and 20-40 cm) and at 365 days, it was included one level of lime (6 t ha-1). For determination of leaf chemical composition and silicate content in the soil, four levels of calcium silicate (0, 2, 4 and 6 t ha-1) were evaluated at 45 and 365 days and at 45 days only for leaf silicate, whereas for dry matter production, all corrective treatments applied were evaluated in evaluation seasons. Application of calcium silicate was positive for soil chemical traits related to acidity correction (pH(CaCl2), Ca, Mg, K, H+Al and V), but the limestone promoted better results at 365 days. Leaf mineral contents were not influenced by application of calcium silicate, but there was an increase on silicate contents in leaves and in the soil. Dry matter yield and chemical composition of palisade grass improved with the application of correctives.
Resumo:
Gaseous N losses from soil are considerable, resulting mostly from ammonia volatilization linked to agricultural activities such as pasture fertilization. The use of simple and accessible measurement methods of such losses is fundamental in the evaluation of the N cycle in agricultural systems. The purpose of this study was to evaluate quantification methods of NH3 volatilization from fertilized surface soil with urea, with minimal influence on the volatilization processes. The greenhouse experiment was arranged in a completely randomized design with 13 treatments and five replications, with the following treatments: (1) Polyurethane foam (density 20 kg m-3) with phosphoric acid solution absorber (foam absorber), installed 1, 5, 10 and 20 cm above the soil surface; (2) Paper filter with sulfuric acid solution absorber (paper absorber, 1, 5, 10 and 20 cm above the soil surface); (3) Sulfuric acid solution absorber (1, 5 and 10 cm above the soil surface); (4) Semi-open static collector; (5) 15N balance (control). The foam absorber placed 1 cm above the soil surface estimated the real daily rate of loss and accumulated loss of NH3N and proved efficient in capturing NH3 volatized from urea-treated soil. The estimates based on acid absorbers 1, 5 and 10 cm above the soil surface and paper absorbers 1 and 5 cm above the soil surface were only realistic for accumulated N-NH3 losses. Foam absorbers can be indicated to quantify accumulated and daily rates of NH3 volatilization losses similarly to an open static chamber, making calibration equations or correction factors unnecessary.
Resumo:
Ferruginous "campos rupestres" are a particular type of vegetation growing on iron-rich primary soils. We investigated the influence of soil properties on plant species abundance at two sites of ferruginous "campos rupestres" and one site of quartzitic "campo rupestre", all of them in "Quadrilátero Ferrífero", in Minas Gerais State, southeastern Brazil. In each site, 30 quadrats were sampled to assess plant species composition and abundance, and soil samples were taken to perform chemical and physical analyses. The analyzed soils are strongly acidic and presented low fertility and high levels of metallic cations; a principal component analysis of soil data showed a clear segregation among sites due mainly to fertility and heavy metals content, especially Cu, Zn, and Pb. The canonical correspondence analysis indicated a strong correlation between plant species abundance and soil properties, also segregating the sites.
Resumo:
The mineralogical characterization through mineral quantification of Brazilian soils by X-ray diffraction data using the Rietveld Method is not common. A mineralogical quantification of an Acric Ferralsol from the Ponta Grossa region, state of Paraná, Brazil, was carried out using this Method with X-Ray Diffraction data to verify if this method was suitable for mineral quantification of a highly-weathered soil. The A, AB and B3 horizons were fractioned to separate the different particle sizes: clay, silt, fine sand (by Stokes Law) and coarse sand fractions (by sieving), with the procedure free of chemical treatments. X-ray Fluorescence, Inductively Coupled Plasma Atomic Emission Spectrometry, Infrared Spectroscopy and Mössbauer Spectroscopy were used in order to assist the mineral identification and quantification. The Rietveld Method enabled the quantification of the present minerals. In a general way, the quantitative mineralogical characterization by the Rietveld Method revealed that quartz, gibbsite, rutile, hematite, goethite, kaolinite and halloysite were present in the clay and silt fractions of all horizons. The silt fractions of the deeper horizons were different from the more superficial ones due to the presence of large amounts of quartz. The fine and the coarse sand fractions are constituted mainly by quartz. Therefore, a mineralogical quantification of the finer fraction (clay and silt) by the Rietveld Method was successful.
Resumo:
The potential of charcoal and of partially combusted organic waste to mimic the soil organic matter of the Terras Pretas de Índios (Amazonian Dark Earths) from the Amazon Region is discussed. These materials serve as soil conditioners and as sequesterers of carbon in recalcitrant and in reactive forms. Studies carried out by Brazilian and by international groups have contributed to the emergence of an awareness of the compositions and of the uses of these materials. In this contribution we report on chemical studies that are leading to the development of a scientific and technological awareness, and of innovations that will have value in finding novel uses in applications to soil of chars from organic wastes such as those from the biofuel industry, and from metallurgical and various coal plant residues.
Resumo:
The aim of the present study was to evaluate the effect of soil characteristics (pH, macro- and micro-nutrients), environmental factors (temperature, humidity, period of the year and time of day of collection) and meteorological conditions (rain, sun, cloud and cloud/rain) on the flavonoid content of leaves of Passiflora incarnata L., Passifloraceae. The total flavonoid contents of leaf samples harvested from plants cultivated or collected under different conditions were quantified by high-performance liquid chromatography with ultraviolet detection (HPLC-UV/PAD). Chemometric treatment of the data by principal component (PCA) and hierarchic cluster analyses (HCA) showed that the samples did not present a specific classification in relation to the environmental and soil variables studied, and that the environmental variables were not significant in describing the data set. However, the levels of the elements Fe, B and Cu present in the soil showed an inverse correlation with the total flavonoid contents of the leaves of P. incarnata.