75 resultados para sohanlal dwivedi,
Resumo:
HINDI
Resumo:
HINDI
Resumo:
The world’s population is ageing rapidly. Ageing has an impact on all aspects of human life, including social, economic, cultural, and political. Understanding ageing is therefore an important issue for the 21st century. This chapter will consider the active ageing model. This model is based on optimising opportunities for health, participation, and security in order to enhance quality of life. There is a range of exciting options developing for personal health management, for and by the ageing population, that make use of computer technology, and these should support active ageing. Their use depends however on older people learning to use computer technology effectively. The ability to use such technology will allow them to access relevant health information, advice, and support independently from wherever they live. Such support should increase rapidly in the future. This chapter is a consideration of ageing and learning, ageing and use of computer technology, and personal health management using computers.
Suboptimal Midcourse Guidance of Interceptors for High-Speed Targets with Alignment Angle Constraint
Resumo:
Using the recently developed computationally efficient model predictive static programming and a closely related model predictive spread control concept, two nonlinear suboptimal midcourse guidance laws are presented in this paper for interceptors engaging against incoming high-speed ballistic missiles. The guidance laws are primarily based on nonlinear optimal control theory, and hence imbed effective trajectory optimization concepts into the guidance laws. Apart from being energy efficient by minimizing the control usage throughout the trajectory (minimum control usage leads to minimum turning, and hence leads to minimum induced drag), both of these laws enforce desired alignment constraints in both elevation and azimuth in a hard-constraint sense. This good alignment during midcourse is expected to enhance the effectiveness of the terminal guidance substantially. Both point mass as well as six-degree-of-freedom simulation results (with a realistic inner-loop autopilot based on dynamic inversion) are presented in this paper, which clearly shows the effectiveness of the proposed guidance laws. It has also been observed that, even with different perturbations of missile parameters, the performance of guidance is satisfactory. A comparison study, with the vector explicit guidance scheme proposed earlier in the literature, also shows that the newly proposed model-predictive-static-programming-based and model-predictive-spread-control-based guidance schemes lead to lesser lateral acceleration demand and lesser velocity loss during engagement.
Resumo:
We determine the optimal allocation of power between the analog and digital sections of an RF receiver while meeting the BER constraint. Unlike conventional RF receiver designs, we treat the SNR at the output of the analog front end (SNRAD) as a design parameter rather than a specification to arrive at this optimal allocation. We first determine the relationship of the SNRAD to the resolution and operating frequency of the digital section. We then use power models for the analog and digital sections to solve the power minimization problem. As an example, we consider a 802.15.4 compliant low-IF receiver operating at 2.4 GHz in 0.13 μm technology with 1.2 V power supply. We find that the overall receiver power is minimized by having the analog front end provide an SNR of 1.3dB and the ADC and the digital section operate at 1-bit resolution with 18MHz sampling frequency while achieving a power dissipation of 7mW.
Resumo:
For a homing interceptor, suitable initial condition must be achieved by mid course guidance scheme for its maximum effectiveness. To achieve desired end goal of any mid course guidance scheme, two point boundary value problem must be solved online with all realistic constrain. A Newly developed computationally efficient technique named as MPSP (Model Predictive Static Programming) is utilized in this paper for obtaining suboptimal solution of optimal mid course guidance. Time to go uncertainty is avoided in this formulation by making use of desired position where midcourse guidance terminate and terminal guidance takes over. A suitable approach angle towards desired point also can be specified in this guidance law formulation. This feature makes this law particularly attractive because warhead effectiveness issue can be indirectly solved in mid course phase.
Resumo:
The resolution of the digital signal path has a crucial impact on the design, performance and the power dissipation of the radio receiver data path, downstream from the ADC. The ADC quantization noise has been traditionally included with the Front End receiver noise in calculating the SNR as well as BER for the receiver. Using the IEEE 802.15.4 as an example, we show that this approach leads to an over-design for the ADC and the digital signal path, resulting in larger power. More accurate specifications for the front-end design can be obtained by making SNRreg a function of signal resolutions. We show that lower resolution signals provide adequate performance and quantization noise alone does not produce any bit-error. We find that a tight bandpass filter preceding the ADC can relax the resolution requirement and a 1-bit ADC degrades SNR by only 1.35 dB compared to 8-bit ADC. Signal resolution has a larger impact on the synchronization and a 1-bit ADC costs about 5 dB in SNR to maintain the same level of performance as a 8-bit ADC.
Resumo:
Benzothiophene derivatives like benzothiophene sulphonamides, biphenyls, or carboxyls have been synthesized and have found wide pharmacological usage. Here we report, bromo-benzothiophene carboxamide derivatives as potent, slow tight binding inhibitors of Plasmodium enoyl-acyl carrier protein (ACP) reductase (PfENR). 3-Bromo-N-(4-fluorobenzyl)-benzo[b]thiophene-2-carboxamide (compound 6) is the most potent inhibitor with an IC(50) of 115 nM for purified PfENR. The inhibition constant (K(i)) of compound 6 was 18 nM with respect to the cofactor and 91 nM with respect to crotonoyl-CoA. These inhibitors showed competitive kinetics with cofactor and uncompetitive kinetics with the substrate. Thus, these compounds hold promise for the development of potent antimalarials. (C) 2011 IUBMB IUBMB Life, 63(12): 1101-1110, 2011
Resumo:
Ethnopharmacological relevance: Medicinal plants have played an important role in treating and preventing a variety of diseases throughout the world. Khampti tribal people living in the far-flung Lohit district of the Eastern Arunachal Himalaya, India still depend on medicinal plants and most of them have a general knowledge of medicinal plants which are used for treating a variety of ailments. This survey was undertaken in Lohit district in order to inventory the medicinal plants used in folk medicine to treat diabetes mellitus. Materials and methods: Field investigations were conducted in seventeen remote villages of Lohit district starting from April 2002 to May 2004 through interviews among 251 key informants who were selected randomly during our household survey. To elucidate community domains and determine differences in indigenous traditional knowledge of medicinal plants with anti-diabetic efficacy, we repeated our field survey starting from April 2008 to May 2010 with one hundred traditional healers locally called as ``Chau ya'' in Khampti of Lohit district. ``Chau ya'' traditional healers who know and use medicinal plants for treating diabetes mellitus were interviewed using a semi-structured questionnaire. Results: This study reports an ethnobotanical survey of medicinal plants in Lohit district of Arunachal Pradesh reputed for the treatment of diabetes mellitus. Forty-six plant species were identified in the study area to treat diabetes mellitus by the Khamptis ``Chau ya'' traditional healers. Comparative published literature survey analysis of this study with other ethnobotanical surveys of plants used traditionally in treating diabetes mellitus suggests that eleven plant species make claims of new reports on antidiabetic efficacy. These plant species are Begonia roxburghii, Calamus tenuis, Callicarpa arborea, Cuscuta reflexa, Dillenia indica, Diplazium esculentum, Lectuca gracilis, Millingtonia hortensis, Oxalis griffithii, Saccharum spontaneum, and Solanum viarum. Some of the plants reported in this study have an antidiabetic effect on rodent models but none have sufficient clinical evidence of effectiveness. Conclusions: The wide variety of medicinal plants that are used to treat diabetes mellitus in this area supports the importance of plants in the primary healthcare system of the rural people of Lohit district of Arunachal Pradesh. The finding of new plant uses in the current study reveals the importance of the documentation of such ethnobotanical knowledge. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
We propose a power scalable digital base band for a low-IF receiver for IEEE 802.15.4-2006. The digital section's sampling frequency and bit width are used as knobs to reduce the power under favorable signal and interference scenarios, thus recovering the design margins introduced to handle worst case conditions. We propose tuning of these knobs based on measurements of Signal and the interference levels. We show that in a 0.13u CMOS technology, for an adaptive digital base band section of the receiver designed to meet the 802.15.4 standard specification, power saving can be up to nearly 85% (0.49mW against 3.3mW) in favorable interference and signal conditions.
Resumo:
Helicobacter pylori is a Gram-negative bacterium that colonizes human stomach and causes gastric inflammation. The species is naturally competent and displays remarkable diversity. The presence of a large number of restriction-modification (R-M) systems in this bacterium creates a barrier against natural transformation by foreign DNA. Yet, mechanisms that protect incoming double-stranded DNA (dsDNA) from restriction enzymes are not well understood. A DNA-binding protein, DNA Processing Protein A (DprA) has been shown to facilitate natural transformation of several Gram-positive and Gram-negative bacteria by protecting incoming single-stranded DNA (ssDNA) and promoting RecA loading on it. However, in this study, we report that H. pylori DprA (HpDprA) binds not only ssDNA but also dsDNA thereby conferring protection to both from various exo-nucleases and Type II restriction enzymes. Here, we observed a stimulatory role of HpDprA in DNA methylation through physical interaction with methyltransferases. Thus, HpDprA displayed dual functional interaction with H. pylori R-M systems by not only inhibiting the restriction enzymes but also stimulating methyltransferases. These results indicate that HpDprA could be one of the factors that modulate the R-M barrier during inter-strain natural transformation in H. pylori.
Resumo:
Curcumin has shown promising therapeutic utilities for many diseases, including cancer; however, its clinical application is severely limited because of its poor stability under physiological conditions. Here we find that curcumin also loses its activity instantaneously in a reducing environment. Curcumin can exist in solution as a tautomeric mixture of keto and enol forms, and the enol form was found to be responsible for the rapid degradation of the compound. To increase the stability of curcumin, several analogues were synthesized in which the diketone moiety of curcumin was replaced by isoxazole (compound 2) and pyrazole (compound 3) groups. Isoxazole and pyrazole curcumins were found to be extremely stable at physiological pH, in addition to reducing atmosphere, and they can kill cancer cells under serum-depleted condition. Using molecular modeling, we found that both compounds 2 and 3 could dock to the same site of tubulin as the parent molecule, curcumin. Interestingly, compounds 2 and 3 also show better free radical scavenging activity than curcumin. Altogether, these results strongly suggest that compounds 2 and 3 could be good replacements for curcumin in future drug development.
Resumo:
The basic requirement for an autopilot is fast response and minimum steady state error for better guidance performance. The highly nonlinear nature of the missile dynamics due to the severe kinematic and inertial coupling of the missile airframe as well as the aerodynamics has been a challenge for an autopilot that is required to have satisfactory performance for all flight conditions in probable engagements. Dynamic inversion is very popular nonlinear controller for this kind of scenario. But the drawback of this controller is that it is sensitive to parameter perturbation. To overcome this problem, neural network has been used to capture the parameter uncertainty on line. The choice of basis function plays the major role in capturing the unknown dynamics. Here in this paper, many basis function has been studied for approximation of unknown dynamics. Cosine basis function has yield the best response compared to any other basis function for capturing the unknown dynamics. Neural network with Cosine basis function has improved the autopilot performance as well as robustness compared to Dynamic inversion without Neural network.