988 resultados para sodium transport
Resumo:
The lung possesses specific transport systems that intra- and extracellularly maintain salt and fluid balance necessary for its function. At birth, the lungs rapidly transform into a fluid (Na(+))-absorbing organ to enable efficient gas exchange. Alveolar fluid clearance, which mainly depends on sodium transport in alveolar epithelial cells, is an important mechanism by which excess water in the alveoli is reabsorbed during the resolution of pulmonary edema. In this review, we will focus and summarize on the role of ENaC in alveolar lung liquid clearance and discuss recent data from mouse models with altered activity of epithelial sodium channel function in the lung, and more specifically in alveolar fluid clearance. Recent data studying mice with hyperactivity of ENaC or mice with reduced ENaC activity clearly illustrate the impaired lung fluid clearance in these adult mice. Further understanding of the physiological role of ENaC and its regulatory proteins implicated in salt and water balance in the alveolar cells may therefore help to develop new therapeutic strategies to improve gas exchange in pulmonary edema.
Resumo:
Changing sodium intake from 70-200 mmol/day elevates blood pressure in normotensive volunteers by 6/4 mmHg. Older people, people with reduced renal function on a low sodium diet and people with a family history of hypertension are more likely to show this effect. The rise in blood pressure was associated with a fall in plasma volume suggesting that plasma volume changes do not initiate hypertension. In normotensive individuals the most common abnormality in membrane sodium transport induced by an extra sodium load was an increased permeability of the red cell to sodium. Some normotensive individuals also had an increase in the level of a plasma inhibitor that inhibited Na-K ATPase. These individuals also appeared to have a rise in blood pressure. Sodium intake and blood pressure are related. The relationship differs in different people and is probably controlled by the genetically inherited capacity of systems involved in membrane sodium transport.
Resumo:
Nedd4-2, a HECT (homologous with E6-associated protein C-terminus)-type ubiquitin protein ligase, has been implicated in regulating several ion channels, including Navs (voltage-gated sodium channels). In Xenopus oocytes Nedd4-2 strongly inhibits the activity of multiple Navs. However, the conditions under which Nedd4-2 mediates native Nav regulation remain uncharacterized. Using Nedd4-2-deficient mice, we demonstrate in the present study that in foetal cortical neurons Nedd4-2 regulates Navs specifically in response to elevated intracellular Na(+), but does not affect steady-state Nav activity. In dorsal root ganglia neurons from the same mice, however, Nedd4-2 does not control Nav activities. The results of the present study provide the first physiological evidence for an essential function of Nedd4-2 in regulating Navs in the central nervous system.
Resumo:
The epithelial sodium channel (ENaC) is preferentially assembled into heteromeric alphabetagamma complexes. The alpha and gamma (not beta) subunits undergo proteolytic cleavage by endogenous furin-like activity correlating with increased ENaC function. We identified full-length subunits and their fragments at the cell surface, as well as in the intracellular pool, for all homo- and heteromeric combinations (alpha, beta, gamma, alphabeta, alphagamma, betagamma, and alphabetagamma). We assayed corresponding channel function as amiloride-sensitive sodium transport (I(Na)). We varied furin-mediated proteolysis by mutating the P1 site in alpha and/or gamma subunit furin consensus cleavage sites (alpha(mut) and gamma(mut)). Our findings were as follows. (i) The beta subunit alone is not transported to the cell surface nor cleaved upon assembly with the alpha and/or gamma subunits. (ii) The alpha subunit alone (or in combination with beta and/or gamma) is efficiently transported to the cell surface; a surface-expressed 65-kDa alpha ENaC fragment is undetected in alpha(mut)betagamma, and I(Na) is decreased by 60%. (iii) The gamma subunit alone does not appear at the cell surface; gamma co-expressed with alpha reaches the surface but is not detectably cleaved; and gamma in alphabetagamma complexes appears mainly as a 76-kDa species in the surface pool. Although basal I(Na) of alphabetagamma(mut) was similar to alphabetagamma, gamma(mut) was not detectably cleaved at the cell surface. Thus, furin-mediated cleavage is not essential for participation of alpha and gamma in alphabetagamma heteromers. Basal I(Na) is reduced by preventing furin-mediated cleavage of the alpha, but not gamma, subunits. Residual current in the absence of furin-mediated proteolysis may be due to non-furin endogenous proteases.
Resumo:
Cellular directional migration in an electric field (galvanotaxis) is one of the mechanisms guiding cell movement in embryogenesis and in skin epidermal repair. The epithelial sodium channel (ENaC), in addition to its function of regulating sodium transport in kidney, has recently been found to modulate cell locomotory speed. Here we tested whether ENaC has an additional function of mediating the directional migration of galvanotaxis in keratinocytes. Genetic depletion of ENaC completely blocks only galvanotaxis and does not decrease migration speed. Overexpression of ENaC is sufficient to drive galvanotaxis in otherwise unresponsive cells. Pharmacologic blockade or maintenance of the open state of ENaC also decreases or increases, respectively, galvanotaxis, suggesting that the channel open state is responsible for the response. Stable lamellipodial extensions formed at the cathodal sides of wild-type cells at the start of galvanotaxis; these were absent in the ENaC knockout keratinocytes, suggesting that ENaC mediates galvanotaxis by generating stable lamellipodia that steer cell migration. We provide evidence that ENaC is required for directional migration of keratinocytes in an electric field, supporting a role for ENaC in skin wound healing.
Resumo:
Thoracic, abdominal, and pelvic fragments of ventral skin of Rana catesbeiana were analysed regarding the effect of oxytocin on: (1) transepithelial water transport; (2) short-circuit current, (3) skin conductance and electrical potential difference; (4) Na+ conductance, the electromotive force of the Nat transport mechanism, and shunt conductance; (5) short-circuit current responses to fast Na+ by K+ replacement in the outer compartment, and (6) epithelial microstructure. Unstimulated water and Na+ permeabilities were low along the ventral skin. Hydrosmotic and natriferic responses to oxytocin increased from thorax to pelvis, Unstimulated Na+ conductance was greater in pelvis than in abdomen, the other electrical parameters being essentially similar in both skin fragments. Contribution of shunt conductance to total skin conductance was higher in abdominal than in pelvic skin. Oxytocin-induced increases of total skin conductance, Na+ conductance, and shunt conductance in pelvis were significantly larger than in abdomen, An oscillatory behaviour of the short-circuit current was observed only in oxytocin-treated pelvic skins. Decrease of epithelial thickness and increase of mitochondria-rich cell number were observed from thorax to pelvis, Oxytocin-induced increases of interspaces were more conspicuous in pelvis and abdomen than in thorax.
Resumo:
Lessa LM, Carraro-Lacroix LR, Crajoinas RO, Bezerra CN, Dariolli R, Girardi AC, Fonteles MC, Malnic G. Mechanisms underlying the inhibitory effects of uroguanylin on NHE3 transport activity in renal proximal tubule. Am J Physiol Renal Physiol 303: F1399-F1408, 2012. First published September 5, 2012; doi: 10.1152/ajprenal.00385.2011.-We previously demonstrated that uroguanylin (UGN) significantly inhibits Na+/H+ exchanger (NHE)3-mediated bicarbonate reabsorption. In the present study, we aimed to elucidate the molecular mechanisms underlying the action of UGN on NHE3 in rat renal proximal tubules and in a proximal tubule cell line (LLC-PK1). The in vivo studies were performed by the stationary microperfusion technique, in which we measured H+ secretion in rat renal proximal segments, through a H+-sensitive microelectrode. UGN (1 mu M) significantly inhibited the net of proximal bicarbonate reabsorption. The inhibitory effect of UGN was completely abolished by either the protein kinase G (PKG) inhibitor KT5823 or by the protein kinase A (PKA) inhibitor H-89. The effects of UGN in vitro were found to be similar to those obtained by microperfusion. Indeed, we observed that incubation of LLC-PK1 cells with UGN induced an increase in the intracellular levels of cAMP and cGMP, as well as activation of both PKA and PKG. Furthermore, we found that UGN can increase the levels of NHE3 phosphorylation at the PKA consensus sites 552 and 605 in LLC-PK1 cells. Finally, treatment of LLC-PK1 cells with UGN reduced the amount of NHE3 at the cell surface. Overall, our data suggest that the inhibitory effect of UGN on NHE3 transport activity in proximal tubule is mediated by activation of both cGMP/PKG and cAMP/PKA signaling pathways which in turn leads to NHE3 phosphorylation and reduced NHE3 surface expression. Moreover, this study sheds light on mechanisms by which guanylin peptides
Resumo:
Besides the kidneys, the gastrointestinal tract is the principal organ responsible for sodium homeostasis. For sodium transport across the cell membranes the epithelial sodium channel (ENaC) is of pivotal relevance. The ENaC is mainly regulated by mineralocorticoid receptor mediated actions. The MR activation by endogenous 11β-hydroxy-glucocorticoids is modulated by the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2). Here we present evidence for intestinal segment specific 11β-HSD2 expression and hypothesize that a high salt intake and/or uninephrectomy (UNX) affects colonic 11β-HSD2, MR and ENaC expression. The 11β-HSD2 activity was measured by means of 3H-corticosterone conversion into 3H-11-dehydrocorticosterone in Sprague Dawley rats on a normal and high salt diet. The activity increased steadily from the ileum to the distal colon by a factor of about 3, an observation in line with the relevance of the distal colon for sodium handling. High salt intake diminished mRNA and protein of 11β-HSD2 by about 50% (p<0.001) and reduced the expression of the MR (p<0.01). The functionally relevant ENaC-β and ENaC-γ expression, a measure of mineralocorticoid action, diminished by more than 50% by high salt intake (p<0.001). The observed changes were present in rats with and without UNX. Thus, colonic epithelial cells appear to contribute to the protective armamentarium of the mammalian body against salt overload, a mechanism not modulated by UNX.
Resumo:
Cellular directional migration in an electric field (galvanotaxis) is one of the mechanisms guiding cell movement in embryogenesis and in skin epidermal repair. The epithelial sodium channel (ENaC), in addition to its function of regulating sodium transport in kidney, has recently been found to modulate cell locomotory speed. Here we tested whether ENaC has an additional function of mediating the directional migration of galvanotaxis in keratinocytes. Genetic depletion of ENaC completely blocks only galvanotaxis and does not decrease migration speed. Overexpression of ENaC is sufficient to drive galvanotaxis in otherwise unresponsive cells. Pharmacologic blockade or maintenance of the open state of ENaC also decreases or increases, respectively, galvanotaxis, suggesting that the channel open state is responsible for the response. Stable lamellipodial extensions formed at the cathodal sides of wild-type cells at the start of galvanotaxis; these were absent in the ENaC knockout keratinocytes, suggesting that ENaC mediates galvanotaxis by generating stable lamellipodia that steer cell migration. We provide evidence that ENaC is required for directional migration of keratinocytes in an electric field, supporting a role for ENaC in skin wound healing.
Resumo:
We investigated the cellular and molecular events associated with the increase in sodium transport across the alveolar epithelium of rats exposed to hyperoxia (85% O2 for 7 days followed by 100% O2 for 4 days). Alveolar type II (ATII) cell RNA was isolated and probed with a cDNA for one of the rat colonic epithelial sodium channel subunits (alpha rENaC). The alpha rENaC mRNA (3.7-kb transcript) increased 3-fold in ATII cell RNA isolated from rats exposed to 85% O2 for 7 days and 6-fold after 4 days of subsequent exposure to 100% O2. In situ hybridization revealed increased expression of alpha rENaC mRNA transcripts in both airway and alveolar epithelial cells of hyperoxic rats. When immunostained with a polyclonal antibody to kidney sodium channel protein, ATII cells from hyperoxic rats exhibited a significant increase in the amount of immunogenic protein present in both the plasma membrane and the cytoplasm. When patched in the whole-cell mode, ATII cells from hyperoxic rats exhibited amiloride and 5-(N-ethyl-N-isopropyl)-2',4'-amiloride (EIPA)-sensitive currents that were 100% higher compared with those obtained from air-breathing rats. Single-channel sodium currents (mean conductance of 25 pS) were seen in ATII cells patched in both the inside-out and cell-attached modes. The number and open probability of these channels increased significantly during exposure to hyperoxia. Exposure to sublethal hyperoxia up-regulated both alpha rENaC mRNA and the functional expression of sodium channels in ATII cells.
Resumo:
Ciguatoxins (CTX) are polyether neurotoxins that target voltage-gated sodium channels and are responsible for ciguatera, the most common fish-borne food poisoning in humans. This study characterizes the global transcriptional response of mouse liver to a symptomatic dose (0.26 ng/g) of the highly potent Pacific ciguatoxin-1 (P-CTX-1). At 1 h post-exposure 2.4% of features on a 44K whole genome array were differentially expressed (p ≤ 0.0001), increasing to 5.2% at 4 h and decreasing to 1.4% by 24 h post-CTX exposure. Data were filtered (|fold change| ≥ 1.5 and p ≤ 0.0001 in at least one time point) and a trend set of 1550 genes were used for further analysis. Early gene expression was likely influenced prominently by an acute 4°C decline in core body temperature by 1 h, which resolved by 8 h following exposure. An initial downregulation of 32 different solute carriers, many involved in sodium transport, was observed. Differential gene expression in pathways involving eicosanoid biosynthesis and cholesterol homeostasis was also noted. Cytochrome P450s (Cyps) were of particular interest due to their role in xenobiotic metabolism. Twenty-seven genes, mostly members of Cyp2 and Cyp4 families, showed significant changes in expression. Many Cyps underwent an initial downregulation at 1 h but were quickly and strongly upregulated at 4 and 24 h post-exposure. In addition to Cyps, increases in several glutathione S-transferases were observed, an indication that both phase I and phase II metabolic reactions are involved in the hepatic response to CTX in mice.
Resumo:
Regulation of sodium balance is a critical factor in the maintenance of euvolemia, and dysregulation of renal sodium excretion results in disorders of altered intravascular volume, such as hypertension. The amiloride-sensitive epithelial sodium channel (ENaC) is thought to be the only mechanism for sodium transport in the cortical collecting duct (CCD) of the kidney. However, it has been found that much of the sodium absorption in the CCD is actually amiloride insensitive and sensitive to thiazide diuretics, which also block the Na-Cl cotransporter (NCC) located in the distal convoluted tubule. In this study, we have demonstrated the presence of electroneutral, amiloride-resistant, thiazide-sensitive, transepithelial NaCl absorption in mouse CCDs, which persists even with genetic disruption of ENaC. Furthermore, hydrochlorothiazide (HCTZ) increased excretion of Na+ and Cl- in mice devoid of the thiazide target NCC, suggesting that an additional mechanism might account for this effect. Studies on isolated CCDs suggested that the parallel action of the Na+-driven Cl-/HCO3- exchanger (NDCBE/SLC4A8) and the Na+-independent Cl-/HCO3- exchanger (pendrin/SLC26A4) accounted for the electroneutral thiazide-sensitive sodium transport. Furthermore, genetic ablation of SLC4A8 abolished thiazide-sensitive NaCl transport in the CCD. These studies establish what we believe to be a novel role for NDCBE in mediating substantial Na+ reabsorption in the CCD and suggest a role for this transporter in the regulation of fluid homeostasis in mice.
Resumo:
Sodium transport via epithelial sodium channels (ENaC) expressed in alveolar epithelial cells (AEC) provides the driving force for removal of fluid from the alveolar space. The membrane-bound channel-activating protease 1 (CAP1/Prss8) activates ENaC in vitro in various expression systems. To study the role of CAP1/Prss8 in alveolar sodium transport and lung fluid balance in vivo, we generated mice lacking CAP1/Prss8 in the alveolar epithelium using conditional Cre-loxP-mediated recombination. Deficiency of CAP1/Prss8 in AEC induced in vitro a 40% decrease in ENaC-mediated sodium currents. Sodium-driven alveolar fluid clearance (AFC) was reduced in CAP1/Prss8-deficient mice, due to a 48% decrease in amiloride-sensitive clearance, and was less sensitive to beta(2)-agonist treatment. Intra-alveolar treatment with neutrophil elastase, a soluble serine protease activating ENaC at the cell surface, fully restored basal AFC and the stimulation by beta(2)-agonists. Finally, acute volume-overload increased alveolar lining fluid volume in CAP1/Prss8-deficient mice. This study reveals that CAP1 plays a crucial role in the regulation of ENaC-mediated alveolar sodium and water transport and in mouse lung fluid balance.
Resumo:
In the microvillar microdomain of the kidney brush border, sodium hydrogen exchanger type 3 (NHE3) exists in physical complexes with the serine protease dipeptidyl peptidase IV (DPPIV). The purpose of this study was to explore the functional relationship between NHE3 and DPPIV in the intact proximal tubule in vivo. To this end, male Wistar rats were treated with an injection of the reversible DPPIV inhibitor Lys [Z(NO(2))]-pyrrolidide (I40; 60 mg center dot kg(-1)center dot day(-1) ip) for 7 days. Rats injected with equal amounts of the noninhibitory compound Lys[ Z(NO(2))]-OH served as controls. Na(+) -H(+) exchange activity in isolated microvillar membrane vesicles was 45 +/- 5% decreased in rats treated with I40. Membrane fractionation studies using isopycnic centrifugation revealed that I40 provoked redistribution of NHE3 along with a small fraction of DPPIV from the apical enriched microvillar membranes to the intermicrovillar microdomain of the brush border. I40 significantly increased urine output ( 67 +/- 9%; P < 0.01), fractional sodium excretion ( 63 +/- 7%; P < 0.01), as well as lithium clearance ( 81 +/- 9%; P < 0.01), an index of end-proximal tubule delivery. Although not significant, a tendency toward decreased blood pressure and plasma pH/HCO(3)(-) was noted in I40-treated rats. These findings indicate that inhibition of DPPIV catalytic activity is associated with inhibition of NHE3-mediated NaHCO(3) reabsorption in rat renal proximal tubule. Inhibition of apical Na(+) -H(+) exchange is due to reduced abundance of NHE3 protein in the microvillar microdomain of the kidney brush border. Moreover, this study demonstrates a physiologically significant interaction between NHE3 and DPPIV in the intact proximal tubule in vivo.
Resumo:
1. 1. Open-circuit voltage (PD) and short-circuit current (SCC) across toad skin were studied in in vivo conditions. An improved technique for fastening a lucite chamber on the abdominal region of the animal was developed. 2. 2. Saline bridges (230 mM Nacl in 4% agar solution) were placed subcutaneously to make the connections between the extracellular fluid and the half-cells. 3. 3. A clear relationship was observed between the electrical parameters and sodium transport by the skin, since PD and SCC were related to the sodium concentration of the bathing solution, and abolished by the presence of amiloride-a specific sodium transport inhibitor in epithelia. 4. 4. The initial control values of SCC in vivo were higher than those in vitro, which was attributed to hormonal stimulation. However, these high initial control values of SCC in vivo fell with time, reaching steady levels after a 2 hr period. 5. 5. Vasopressin failed to increase SCC in vivo when the external sodium concentration was 115 mM, being effective only when the sodium concentration was low (5 mM). 6. 6. On the other hand, in isolated preparations vasopressin significantly promoted an increase in both PD and SCC. © 1983.