949 resultados para skills mapping process
Resumo:
Tämän pro gradu –tutkielman tarkoituksena on selvittää minkälaisella prosessilla saadaan määriteltyä resursoinnin näkökulmasta toteutettu osaamiskartoitus. Tutkimus on laadullinen tapaustutkimus kohdeorganisaatiossa. Tutkimusaineisto on kerätty dokumenteista ja tutkimuksessa toteutetuista tapaamisista sekä työpajoista. Tutkimusaineisto on analysoitu aineistolähtöisellä sisällönanalyysimenetelmällä. Tutkimuksen tulosten mukaan osaamiskartoitusprosessiin ja sen onnistumiseen vaikuttavat merkittävästi yrityksen strategia, johdon sitoutuminen osaamiskartoitustyöhön, nykytilan analyysi, yhteiset käsitteistöt, mittarit ja tavoitteet. Resursoinnin näkökulmasta vaadittavat osaamiset eivät välttämättä ole samat kuin kehittämisen näkökulmasta. Määrittelyprosessin onnistumisen kannalta merkittäviä tekijöitä ovat oikeiden henkilöiden osallistuminen prosessiin ja heidän halunsa jakaa tietoa.
Resumo:
Ecological interface design (EID) is proving to be a promising approach to the design of interfaces for complex dynamic systems. Although the principles of EID and examples of its effective use are widely available, few readily available examples exist of how the individual displays that constitute an ecological interface are developed. This paper presents the semantic mapping process within EID in the context of prior theoretical work in this area. The semantic mapping process that was used in developing an ecological interface for the Pasteurizer II microworld is outlined, and the results of an evaluation of the ecological interface against a more conventional interface are briefly presented. Subjective reports indicate features of the ecological interface that made it particularly valuable for participants. Finally, we outline the steps of an analytic process for using EID. The findings presented here can be applied in the design of ecological interfaces or of configural displays for dynamic processes.
Resumo:
Com este trabalho pretendemos desenvolver um projeto de intervenção no âmbito do Mapeamento de Competências, a implementar na Amorim & Irmãos, SA, a Entidade Acolhedora do Projeto. O diagnóstico realizado à Função Recursos Humanos permitiu identificar como potencial de intervenção o Mapeamento de Competências Chave. As Competências Chave são fundamentais para a operacionalização da missão e visão das organizações. Nos contextos de atuação global das empresas prevalece a incerteza e a necessidade de constantes readaptações da estrutura organizativa para garantir o sucesso dos planos estratégicos do negócio. Neste contexto empresarial, os modelos de gestão das pessoas assentes na Avaliação e Gestão de Competências são uma resposta adequada aos ciclos frequentes de mudança organizacional. O Mapeamento de Competências é, neste quadro de atuação das empresas, fundamental para a necessária adequação das competências dos colaboradores à operacionalização do plano estratégico do negócio. Assim, optamos pela conceção de um projeto de intervenção para Mapeamento das Competências Chave focado nas chefias de uma unidade industrial produtora de rolhas de cortiça. A metodologia adotada para a implementação deste projeto parte dos elementos estratégicos da empresa: Fatores Críticos de Sucessos, Pontos Fortes e Pontos Fracos. Foram definidos dois âmbitos para a implementação de uma estratégia de mapeamento de competências de cima para baixo: (1) identificação das Competência Chave e (2) definição da Competências Chave. Na implementação deste projeto intervieram vários interlocutores: as chefias intermedias da Unidade Industrial de Lamas, o Diretor de Logística, o Diretor de Recursos Humanos e um Técnico de Recursos Humanos que, sob a gestão do autor do projeto, manifestaram ao longo de todo o processo o envolvimento e compromisso indispensáveis para a sua concretização. Os resultados da avaliação permitem concluir que o projeto planeado e implementado atingiu a finalidade proposta: ter validado, em novembro de 2015, o Portfólio das Competências Chave Transversais e as Competências Chave Específicas das chefias intermedias da Unidade Industrial de Lamas, necessárias para a sustentabilidade do negócio da Amorim & Irmãos, SA.
Resumo:
Sonae MC is constantly innovating and keeping up with the new market trends, being increasingly focused on E-commerce due to its growing importance. In that area, a telephone line is available to support customers with their problems. However, rare were the cases in which those problems were solved in the first contact. Therefore, the goal of this work was to reengineer these processes to improve the service performance and consequently the customer’s satisfaction. Following an evolutionary approach, improvement opportunities were suggested and if correctly implemented the cases resolution time could decrease 1 day and Sonae MC will save €7.750 per month.
Resumo:
Value network has been studied greatly in the academic research, but a tool for value network mapping is missing. The objective of this study was to design a tool (process) for value network mapping in cross-sector collaboration. Furthermore, the study addressed a future perspective of collaboration, aiming to map the value network potential. During the study was investigated and pondered how to get the full potential of collaboration, by creating new value in collaboration process. These actions are parts of mapping process proposed in the study. The implementation and testing of the mapping process were realized through a case study of cross-sector collaboration in welfare services for elderly in the Eastern Finland. Key representatives in elderly care from public, private and third sectors were interviewed and a workshop with experts from every sector was also conducted in this regard. The value network mapping process designed in this study consists of specific steps that help managers and experts to understand how to get a complex value network map and how to enhance it. Furthermore, it make easier the understanding of how new value can be created in collaboration process. The map can be used in order to motivate participants to be engaged with responsibility in collaboration and to be fully committed in their interactions. It can be also used as a motivator tool for those organizations that intend to engage in collaboration process. Additionally, value network map is a starting point in many value network analyses. Furthermore, the enhanced value network map can be used as a performance measurement tool in cross-sector collaboration.
Resumo:
Acid sulfate (a.s.) soils constitute a major environmental issue. Severe ecological damage results from the considerable amounts of acidity and metals leached by these soils in the recipient watercourses. As even small hot spots may affect large areas of coastal waters, mapping represents a fundamental step in the management and mitigation of a.s. soil environmental risks (i.e. to target strategic areas). Traditional mapping in the field is time-consuming and therefore expensive. Additional more cost-effective techniques have, thus, to be developed in order to narrow down and define in detail the areas of interest. The primary aim of this thesis was to assess different spatial modeling techniques for a.s. soil mapping, and the characterization of soil properties relevant for a.s. soil environmental risk management, using all available data: soil and water samples, as well as datalayers (e.g. geological and geophysical). Different spatial modeling techniques were applied at catchment or regional scale. Two artificial neural networks were assessed on the Sirppujoki River catchment (c. 440 km2) located in southwestern Finland, while fuzzy logic was assessed on several areas along the Finnish coast. Quaternary geology, aerogeophysics and slope data (derived from a digital elevation model) were utilized as evidential datalayers. The methods also required the use of point datasets (i.e. soil profiles corresponding to known a.s. or non-a.s. soil occurrences) for training and/or validation within the modeling processes. Applying these methods, various maps were generated: probability maps for a.s. soil occurrence, as well as predictive maps for different soil properties (sulfur content, organic matter content and critical sulfide depth). The two assessed artificial neural networks (ANNs) demonstrated good classification abilities for a.s. soil probability mapping at catchment scale. Slightly better results were achieved using a Radial Basis Function (RBF) -based ANN than a Radial Basis Functional Link Net (RBFLN) method, narrowing down more accurately the most probable areas for a.s. soil occurrence and defining more properly the least probable areas. The RBF-based ANN also demonstrated promising results for the characterization of different soil properties in the most probable a.s. soil areas at catchment scale. Since a.s. soil areas constitute highly productive lands for agricultural purpose, the combination of a probability map with more specific soil property predictive maps offers a valuable toolset to more precisely target strategic areas for subsequent environmental risk management. Notably, the use of laser scanning (i.e. Light Detection And Ranging, LiDAR) data enabled a more precise definition of a.s. soil probability areas, as well as the soil property modeling classes for sulfur content and the critical sulfide depth. Given suitable training/validation points, ANNs can be trained to yield a more precise modeling of the occurrence of a.s. soils and their properties. By contrast, fuzzy logic represents a simple, fast and objective alternative to carry out preliminary surveys, at catchment or regional scale, in areas offering a limited amount of data. This method enables delimiting and prioritizing the most probable areas for a.s soil occurrence, which can be particularly useful in the field. Being easily transferable from area to area, fuzzy logic modeling can be carried out at regional scale. Mapping at this scale would be extremely time-consuming through manual assessment. The use of spatial modeling techniques enables the creation of valid and comparable maps, which represents an important development within the a.s. soil mapping process. The a.s. soil mapping was also assessed using water chemistry data for 24 different catchments along the Finnish coast (in all, covering c. 21,300 km2) which were mapped with different methods (i.e. conventional mapping, fuzzy logic and an artificial neural network). Two a.s. soil related indicators measured in the river water (sulfate content and sulfate/chloride ratio) were compared to the extent of the most probable areas for a.s. soils in the surveyed catchments. High sulfate contents and sulfate/chloride ratios measured in most of the rivers demonstrated the presence of a.s. soils in the corresponding catchments. The calculated extent of the most probable a.s. soil areas is supported by independent data on water chemistry, suggesting that the a.s. soil probability maps created with different methods are reliable and comparable.
Resumo:
Many weeds occur in patches but farmers frequently spray whole fields to control the weeds in these patches. Given a geo-referenced weed map, technology exists to confine spraying to these patches. Adoption of patch spraying by arable farmers has, however, been negligible partly due to the difficulty of constructing weed maps. Building on previous DEFRA and HGCA projects, this proposal aims to develop and evaluate a machine vision system to automate the weed mapping process. The project thereby addresses the principal technical stumbling block to widespread adoption of site specific weed management (SSWM). The accuracy of weed identification by machine vision based on a single field survey may be inadequate to create herbicide application maps. We therefore propose to test the hypothesis that sufficiently accurate weed maps can be constructed by integrating information from geo-referenced images captured automatically at different times of the year during normal field activities. Accuracy of identification will also be increased by utilising a priori knowledge of weeds present in fields. To prove this concept, images will be captured from arable fields on two farms and processed offline to identify and map the weeds, focussing especially on black-grass, wild oats, barren brome, couch grass and cleavers. As advocated by Lutman et al. (2002), the approach uncouples the weed mapping and treatment processes and builds on the observation that patches of these weeds are quite stable in arable fields. There are three main aspects to the project. 1) Machine vision hardware. Hardware component parts of the system are one or more cameras connected to a single board computer (Concurrent Solutions LLC) and interfaced with an accurate Global Positioning System (GPS) supplied by Patchwork Technology. The camera(s) will take separate measurements for each of the three primary colours of visible light (red, green and blue) in each pixel. The basic proof of concept can be achieved in principle using a single camera system, but in practice systems with more than one camera may need to be installed so that larger fractions of each field can be photographed. Hardware will be reviewed regularly during the project in response to feedback from other work packages and updated as required. 2) Image capture and weed identification software. The machine vision system will be attached to toolbars of farm machinery so that images can be collected during different field operations. Images will be captured at different ground speeds, in different directions and at different crop growth stages as well as in different crop backgrounds. Having captured geo-referenced images in the field, image analysis software will be developed to identify weed species by Murray State and Reading Universities with advice from The Arable Group. A wide range of pattern recognition and in particular Bayesian Networks will be used to advance the state of the art in machine vision-based weed identification and mapping. Weed identification algorithms used by others are inadequate for this project as we intend to collect and correlate images collected at different growth stages. Plants grown for this purpose by Herbiseed will be used in the first instance. In addition, our image capture and analysis system will include plant characteristics such as leaf shape, size, vein structure, colour and textural pattern, some of which are not detectable by other machine vision systems or are omitted by their algorithms. Using such a list of features observable using our machine vision system, we will determine those that can be used to distinguish weed species of interest. 3) Weed mapping. Geo-referenced maps of weeds in arable fields (Reading University and Syngenta) will be produced with advice from The Arable Group and Patchwork Technology. Natural infestations will be mapped in the fields but we will also introduce specimen plants in pots to facilitate more rigorous system evaluation and testing. Manual weed maps of the same fields will be generated by Reading University, Syngenta and Peter Lutman so that the accuracy of automated mapping can be assessed. The principal hypothesis and concept to be tested is that by combining maps from several surveys, a weed map with acceptable accuracy for endusers can be produced. If the concept is proved and can be commercialised, systems could be retrofitted at low cost onto existing farm machinery. The outputs of the weed mapping software would then link with the precision farming options already built into many commercial sprayers, allowing their use for targeted, site-specific herbicide applications. Immediate economic benefits would, therefore, arise directly from reducing herbicide costs. SSWM will also reduce the overall pesticide load on the crop and so may reduce pesticide residues in food and drinking water, and reduce adverse impacts of pesticides on non-target species and beneficials. Farmers may even choose to leave unsprayed some non-injurious, environmentally-beneficial, low density weed infestations. These benefits fit very well with the anticipated legislation emerging in the new EU Thematic Strategy for Pesticides which will encourage more targeted use of pesticides and greater uptake of Integrated Crop (Pest) Management approaches, and also with the requirements of the Water Framework Directive to reduce levels of pesticides in water bodies. The greater precision of weed management offered by SSWM is therefore a key element in preparing arable farming systems for the future, where policy makers and consumers want to minimise pesticide use and the carbon footprint of farming while maintaining food production and security. The mapping technology could also be used on organic farms to identify areas of fields needing mechanical weed control thereby reducing both carbon footprints and also damage to crops by, for example, spring tines. Objective i. To develop a prototype machine vision system for automated image capture during agricultural field operations; ii. To prove the concept that images captured by the machine vision system over a series of field operations can be processed to identify and geo-reference specific weeds in the field; iii. To generate weed maps from the geo-referenced, weed plants/patches identified in objective (ii).
Resumo:
This culminating experience was a practice based intervention conducted by an organization, utilizing an intervention mapping approach for the program planning. It took place summer 2010 through spring 2011 and included incorporating a community garden into the Gusto wellness program at The Women's Home. This organization offers long-term residential care, and therapeutic services. Literature relating to community gardens and nutrition behavior change was reviewed. Short-term objectives included: 1) Conducting a needs assessment using focus groups, 2) Designing gardening program components based on intervention mapping guidelines, 3) Constructing a garden bed at Midtown Community Garden for use of The Women's Home, 4) Planning and implementing gardening education, and 5) Assessing feasibility of the garden program. The target population included 24 residents living at the residential dormitory of The Women's Home at the time of this project. The major variables are intervention mapping constructs including: 1) Needs assessment, 2) Preparing matrices of change objectives, 3) Selecting theory-informed intervention methods and practical strategies, 4) Producing program components and materials, 5) Planning program adoption, implementation, and sustainability, and 6) Planning for evaluation. The specific focus was lack of access to fresh fruits and vegetables (FV) for this population. Focus group responses revealed interest in community garden participation. Matrices of change were developed for lack of FV access based on performance objectives for behavioral and environmental factors and related determinants and theory. Methods and strategies were developed to implement a community garden and encourage participation. Program components included initiating a garden club, networking activities, creating gardening curriculum, and participating at Midtown Community Garden. Adoption and implementation performance objectives were outlined, and many were carried out. Evaluation questions were designed and outcomes of the garden project were discussed. ^ Outcomes of the project included exposure of garden topics and activities for The Women's Home residents, focus group responses revealing an interest in gardening among this population, gardening program components designed based on intervention mapping steps, and a constructed garden bed that was used for planting vegetables and flowers through fall 2010. Limited resources and budget along with a lack of a residential coordinator at The Women's Home were the main limiting factors for this project. Future garden projects can be developed using the intervention mapping process.^
Resumo:
La mayor parte de los entornos diseñados por el hombre presentan características geométricas específicas. En ellos es frecuente encontrar formas poligonales, rectangulares, circulares . . . con una serie de relaciones típicas entre distintos elementos del entorno. Introducir este tipo de conocimiento en el proceso de construcción de mapas de un robot móvil puede mejorar notablemente la calidad y la precisión de los mapas resultantes. También puede hacerlos más útiles de cara a un razonamiento de más alto nivel. Cuando la construcción de mapas se formula en un marco probabilístico Bayesiano, una especificación completa del problema requiere considerar cierta información a priori sobre el tipo de entorno. El conocimiento previo puede aplicarse de varias maneras, en esta tesis se presentan dos marcos diferentes: uno basado en el uso de primitivas geométricas y otro que emplea un método de representación cercano al espacio de las medidas brutas. Un enfoque basado en características geométricas supone implícitamente imponer un cierto modelo a priori para el entorno. En este sentido, el desarrollo de una solución al problema SLAM mediante la optimización de un grafo de características geométricas constituye un primer paso hacia nuevos métodos de construcción de mapas en entornos estructurados. En el primero de los dos marcos propuestos, el sistema deduce la información a priori a aplicar en cada caso en base a una extensa colección de posibles modelos geométricos genéricos, siguiendo un método de Maximización de la Esperanza para hallar la estructura y el mapa más probables. La representación de la estructura del entorno se basa en un enfoque jerárquico, con diferentes niveles de abstracción para los distintos elementos geométricos que puedan describirlo. Se llevaron a cabo diversos experimentos para mostrar la versatilidad y el buen funcionamiento del método propuesto. En el segundo marco, el usuario puede definir diferentes modelos de estructura para el entorno mediante grupos de restricciones y energías locales entre puntos vecinos de un conjunto de datos del mismo. El grupo de restricciones que se aplica a cada grupo de puntos depende de la topología, que es inferida por el propio sistema. De este modo, se pueden incorporar nuevos modelos genéricos de estructura para el entorno con gran flexibilidad y facilidad. Se realizaron distintos experimentos para demostrar la flexibilidad y los buenos resultados del enfoque propuesto. Abstract Most human designed environments present specific geometrical characteristics. In them, it is easy to find polygonal, rectangular and circular shapes, with a series of typical relations between different elements of the environment. Introducing this kind of knowledge in the mapping process of mobile robots can notably improve the quality and accuracy of the resulting maps. It can also make them more suitable for higher level reasoning applications. When mapping is formulated in a Bayesian probabilistic framework, a complete specification of the problem requires considering a prior for the environment. The prior over the structure of the environment can be applied in several ways; this dissertation presents two different frameworks, one using a feature based approach and another one employing a dense representation close to the measurements space. A feature based approach implicitly imposes a prior for the environment. In this sense, feature based graph SLAM was a first step towards a new mapping solution for structured scenarios. In the first framework, the prior is inferred by the system from a wide collection of feature based priors, following an Expectation-Maximization approach to obtain the most probable structure and the most probable map. The representation of the structure of the environment is based on a hierarchical model with different levels of abstraction for the geometrical elements describing it. Various experiments were conducted to show the versatility and the good performance of the proposed method. In the second framework, different priors can be defined by the user as sets of local constraints and energies for consecutive points in a range scan from a given environment. The set of constraints applied to each group of points depends on the topology, which is inferred by the system. This way, flexible and generic priors can be incorporated very easily. Several tests were carried out to demonstrate the flexibility and the good results of the proposed approach.
Resumo:
O objetivo geral é caracterizar o trabalho em equipe, com base na abordagem das competências, em universidades públicas. Os objetivos específicos são identificar os papéis que o servidor desempenha na equipe; a maturidade das equipes; as características de super equipe; os indicadores de competência (conhecimento, habilidade e atitude) para o trabalho em equipe; e os atributos de competência \'conhecimento\' do servidor com relação à organização (estrutura e processos), informação (comunicação) e desenvolvimento (treinamento e aprendizagem). Alguns trabalhos na literatura destacam a importância das competências e do trabalho em equipe na gestão de competências e a relevância da gestão pública. Entretanto, se faz necessário estudos sobre as competências para o trabalho em equipe na gestão de universidades públicas. Para atingir o objetivo proposto foi feito um levantamento em três universidades paulistas, por meio de um questionário, respondido por servidores técnico-administrativos, além de uma revisão bibliográfica sobre o tema. Foi possível comparar teoria e prática e obter conclusões sobre o tema estudado. Como principais resultados observou-se os atributos e os indicadores de competências, que tornam possível iniciar um processo de mapeamento de competências para desenvolver um modelo de aprimoramento dos setores que utilizam as equipes.
Resumo:
A growing interest in mapping the social value of ecosystem services (ES) is not yet methodologically aligned with what is actually being mapped. We critically examine aspects of the social value mapping process that might influence map outcomes and limit their practical use in decision making. We rely on an empirical case of participatory mapping, for a single ES (recreation opportunities), which involves diverse stakeholders such as planners, researchers, and community representatives. Value elicitation relied on an individual open-ended interview and a mapping exercise. Interpretation of the narratives and GIS calculations of proximity, centrality, and dispersion helped in exploring the factors driving participants’ answers. Narratives reveal diverse value types. Whereas planners highlighted utilitarian and aesthetic values, the answers from researchers revealed naturalistic values as well. In turn community representatives acknowledged symbolic values. When remitted to the map, these values were constrained to statements toward a much narrower set of features of the physical (e.g., volcanoes) and built landscape (e.g., roads). The results suggest that mapping, as an instrumental approach toward social valuation, may capture only a subset of relevant assigned values. This outcome is the interplay between participants’ characteristics, including their acquaintance with the territory and their ability with maps, and the mapping procedure itself, including the proxies used to represent the ES and the value typology chosen, the elicitation question, the cartographic features displayed on the base map, and the spatial scale.
Resumo:
To translate and transfer solution data between two totally different meshes (i.e. mesh 1 and mesh 2), a consistent point-searching algorithm for solution interpolation in unstructured meshes consisting of 4-node bilinear quadrilateral elements is presented in this paper. The proposed algorithm has the following significant advantages: (1) The use of a point-searching strategy allows a point in one mesh to be accurately related to an element (containing this point) in another mesh. Thus, to translate/transfer the solution of any particular point from mesh 2 td mesh 1, only one element in mesh 2 needs to be inversely mapped. This certainly minimizes the number of elements, to which the inverse mapping is applied. In this regard, the present algorithm is very effective and efficient. (2) Analytical solutions to the local co ordinates of any point in a four-node quadrilateral element, which are derived in a rigorous mathematical manner in the context of this paper, make it possible to carry out an inverse mapping process very effectively and efficiently. (3) The use of consistent interpolation enables the interpolated solution to be compatible with an original solution and, therefore guarantees the interpolated solution of extremely high accuracy. After the mathematical formulations of the algorithm are presented, the algorithm is tested and validated through a challenging problem. The related results from the test problem have demonstrated the generality, accuracy, effectiveness, efficiency and robustness of the proposed consistent point-searching algorithm. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
Understanding the ecological role of benthic microalgae, a highly productive component of coral reef ecosystems, requires information on their spatial distribution. The spatial extent of benthic microalgae on Heron Reef (southern Great Barrier Reef, Australia) was mapped using data from the Landsat 5 Thematic Mapper sensor. integrated with field measurements of sediment chlorophyll concentration and reflectance. Field-measured sediment chlorophyll concentrations. 2 ranging from 23-1.153 mg chl a m(2), were classified into low, medium, and high concentration classes (1-170, 171-290, and > 291 mg chl a m(-2)) using a K-means clustering algorithm. The mapping process assumed that areas in the Thematic Mapper image exhibiting similar reflectance levels in red and blue bands would correspond to areas of similar chlorophyll a levels. Regions of homogenous reflectance values corresponding to low, medium, and high chlorophyll levels were identified over the reef sediment zone by applying a standard image classification algorithm to the Thematic Mapper image. The resulting distribution map revealed large-scale ( > 1 km 2) patterns in chlorophyll a levels throughout the sediment zone of Heron Reef. Reef-wide estimates of chlorophyll a distribution indicate that benthic Microalgae may constitute up to 20% of the total benthic chlorophyll a at Heron Reef. and thus contribute significantly to total primary productivity on the reef.
Resumo:
A navegação de veículos autónomos em ambientes não estruturados continua a ser um problema em aberto. A complexidade do mundo real ainda é um desafio. A difícil caracterização do relevo irregular, dos objectos dinâmicos e pouco distintos(e a inexistência de referências de localização) tem sido alvo de estudo e do desenvolvimento de vários métodos que permitam de uma forma eficiente, e em tempo real, modelizar o espaço tridimensional. O trabalho realizado ao longo desta dissertação insere-se na estratégia do Laboratório de Sistemas Autónomos (LSA) na pesquisa e desenvolvimento de sistemas sensoriais que possibilitem o aumento da capacidade de percepção das plataformas robóticas. O desenvolvimento de um sistema de modelização tridimensional visa acrescentar aos projectos LINCE (Land INtelligent Cooperative Explorer) e TIGRE (Terrestrial Intelligent General proposed Robot Explorer) maior autonomia e capacidade de exploração e mapeamento. Apresentamos alguns sensores utilizados para a aquisição de modelos tridimensionais, bem como alguns dos métodos mais utilizados para o processo de mapeamento, e a sua aplicação em plataformas robóticas. Ao longo desta dissertação são apresentadas e validadas técnicas que permitem a obtenção de modelos tridimensionais. É abordado o problema de analisar a cor e geometria dos objectos, e da criação de modelos realistas que os representam. Desenvolvemos um sistema que nos permite a obtenção de dados volumétricos tridimensionais, a partir de múltiplas leituras de um Laser Range Finder bidimensional de médio alcance. Aos conjuntos de dados resultantes associamos numa nuvem de pontos coerente e referenciada. Foram desenvolvidas e implementadas técnicas de segmentação que permitem inspeccionar uma nuvem de pontos e classifica-la quanto às suas características geométricas, bem como ao tipo de estruturas que representem. São apresentadas algumas técnicas para a criação de Mapas de Elevação Digital, tendo sido desenvolvida um novo método que tira partido da segmentação efectuada
Resumo:
La beca concedida ha anat destinada a desenvolupar la tesi doctoral que duu per nom "Les ciutats turístiques, les noves ciutats. Anàlisi de l'evolució del model turístic en destinacions de litoral madures a partir de l'anàlisi de paràmetres urbanístics". L’àrea d’estudi comprèn els municipis de Cambrils, Salou i La Pineda (Vila-seca) que conformen la Costa Daurada central, destinació madura de litoral mediterrani, que basa el seu desenvolupament d’acord el model turístic de sol i platja. Arribats en aquest punt de finalització de la beca, cal destacar que s’ha complert amb l'objectiu d'analitzar el procés de transformació de les ciutats turístiques, tot establint com el turisme litoral mediterrani s'ha convertit en un factor de creació de ciutat. Així mateix també s'han complert els objectius específics tals com: analitzar l'evolució de les destinacions turístiques consolidades del litoral mediterrani, recopilar informació per a la creació d'índexs i eines que serveixin per l'anàlisi del procés de tranformació de les ciutats turístiques a ciutats tradicionals a partir del tractament dels plans parcials, recopilar i analitzar les polítiques de planificació que han condicionat l'area d'estudi, modelitzar el procés de construcció de l'espai turístic a partir de l'establiment d'unes unitats bàsiques en la descripció i anàlisi territorial i paisatgístic, i crear un SIG per culminar el procés d'anàlisi tot creant una base de dades i la representació dels resultats en cartogradia temàtica. Pel que fa al disseny i l’execució de la metodologia, es poden considerar dos vessants, una vessant més qualitativa i una altra més quantitativa per al tractament de la informació recopilada. Igualment la generació de cartografia específica completa el procés amb la producció de cartografia específica, tal i com es desenvolupa en la present memòria. La tesi parteix del guió que contempla: un prier capítol d'introducció, un segon dedicat al marc teòric, un tercer apartat on s'exposaran les hipòtesis de les quals es parteix, i un quart dedicat a la metodologia. Pren especial importància l'apartat dedicat a l’ànalisi, així com el dedicat a la discussió dels resultats obtinguts, que es desenvoluparà en el sisè apartat. Per últim resta destacar el setè apartat dedicat a les conclusions a les que s'ha arribat.