438 resultados para skewness


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The skewness sk(G) of a graph G = (V, E) is the smallest integer sk(G) >= 0 such that a planar graph can be obtained from G by the removal of sk(C) edges. The splitting number sp(G) of C is the smallest integer sp(G) >= 0 such that a planar graph can be obtained from G by sp(G) vertex splitting operations. The vertex deletion vd(G) of G is the smallest integer vd(G) >= 0 such that a planar graph can be obtained from G by the removal of vd(G) vertices. Regular toroidal meshes are popular topologies for the connection networks of SIMD parallel machines. The best known of these meshes is the rectangular toroidal mesh C(m) x C(n) for which is known the skewness, the splitting number and the vertex deletion. In this work we consider two related families: a triangulation Tc(m) x c(n) of C(m) x C(n) in the torus, and an hexagonal mesh Hc(m) x c(n), the dual of Tc(m) x c(n) in the torus. It is established that sp(Tc(m) x c(n)) = vd(Tc(m) x c(n) = sk(Hc(m) x c(n)) = sp(Hc(m) x c(n)) = vd(Hc(m) x c(n)) = min{m, n} and that sk(Tc(m) x c(n)) = 2 min {m, n}.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This contribution compares existing and newly developed techniques for geometrically representing mean-variances-kewness portfolio frontiers based on the rather widely adapted methodology of polynomial goal programming (PGP) on the one hand and the more recent approach based on the shortage function on the other hand. Moreover, we explain the working of these different methodologies in detail and provide graphical illustrations. Inspired by these illustrations, we prove a generalization of the well-known two fund separation theorem from traditionalmean-variance portfolio theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the independent effect of skewness and kurtosis on the robustness of the linear mixed model (LMM), with the Kenward-Roger (KR) procedure, when group distributions are different, sample sizes are small, and sphericity cannot be assumed. Methods: A Monte Carlo simulation study considering a split-plot design involving three groups and four repeated measures was performed. Results: The results showed that when group distributions are different, the effect of skewness on KR robustness is greater than that of kurtosis for the corresponding values. Furthermore, the pairings of skewness and kurtosis with group size were found to be relevant variables when applying this procedure. Conclusions: With sample sizes of 45 and 60, KR is a suitable option for analyzing data when the distributions are: (a) mesokurtic and not highly or extremely skewed, and (b) symmetric with different degrees of kurtosis. With total sample sizes of 30, it is adequate when group sizes are equal and the distributions are: (a) mesokurtic and slightly or moderately skewed, and sphericity is assumed; and (b) symmetric with a moderate or high/extreme violation of kurtosis. Alternative analyses should be considered when the distributions are highly or extremely skewed and samples sizes are small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigates the pricing effects of idiosyncratic moments. We document that idiosyncratic moments, namely idiosyncratic skewness and idiosyncratic kurtosis vary over time. If a factor/characteristic is priced, it must show minimum variation to be correlated with stock returns. Moreover, we can identify two structural breaks in the time series of idiosyncratic kurtosis. Using a sample of US stocks traded on NYSE, AMEX and NASDAQ markets from January 1970 to December 2013, we run Fama-MacBeth test at the individual stock level. We document a negative and significant pricing effect of idiosyncratic skewness, consistent with the finding of Boyer et al. (2010). We also report that neither idiosyncratic volatility nor idiosyncratic kurtosis are consistently priced. We run robustness tests using different model specifications and period sub-samples. Our results are robust to the different factors and characteristics usually included in the Fama-MacBeth pricing tests. We also split first our sample using endogenously determined structural breaks. Second, we divide our sample into three equal sub-periods. The results are consistent with our main findings suggesting that expected returns of individual stocks are explained by idiosyncratic skewness. Both idiosyncratic volatility and idiosyncratic kurtosis are irrelevant to asset prices at the individual stock level. As an alternative method, we run Fama-MacBeth tests at the portfolio level. We find that idiosyncratic skewness is not significantly related to returns on idiosyncratic skewness-sorted portfolios. However, it is significant when tested against idiosyncratic kurtosis sorted portfolios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigates the pricing effects of idiosyncratic moments. We document that idiosyncratic moments, namely idiosyncratic skewness and idiosyncratic kurtosis vary over time. If a factor/characteristic is priced, it must show minimum variation to be correlated with stock returns. Moreover, we can identify two structural breaks in the time series of idiosyncratic kurtosis. Using a sample of US stocks traded on NYSE, AMEX and NASDAQ markets from January 1970 to December 2013, we run Fama-MacBeth test at the individual stock level. We document a negative and significant pricing effect of idiosyncratic skewness, consistent with the finding of Boyer et al. (2010). We also report that neither idiosyncratic volatility nor idiosyncratic kurtosis are consistently priced. We run robustness tests using different model specifications and period sub-samples. Our results are robust to the different factors and characteristics usually included in the Fama-MacBeth pricing tests. We also split first our sample using endogenously determined structural breaks. Second, we divide our sample into three equal sub-periods. The results are consistent with our main findings suggesting that expected returns of individual stocks are explained by idiosyncratic skewness. Both idiosyncratic volatility and idiosyncratic kurtosis are irrelevant to asset prices at the individual stock level. As an alternative method, we run Fama-MacBeth tests at the portfolio level. We find that idiosyncratic skewness is not significantly related to returns on idiosyncratic skewness-sorted portfolios. However, it is significant when tested against idiosyncratic kurtosis sorted portfolios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the problem of testing the error distribution in a multivariate linear regression (MLR) model. The tests are functions of appropriately standardized multivariate least squares residuals whose distribution is invariant to the unknown cross-equation error covariance matrix. Empirical multivariate skewness and kurtosis criteria are then compared to simulation-based estimate of their expected value under the hypothesized distribution. Special cases considered include testing multivariate normal, Student t; normal mixtures and stable error models. In the Gaussian case, finite-sample versions of the standard multivariate skewness and kurtosis tests are derived. To do this, we exploit simple, double and multi-stage Monte Carlo test methods. For non-Gaussian distribution families involving nuisance parameters, confidence sets are derived for the the nuisance parameters and the error distribution. The procedures considered are evaluated in a small simulation experi-ment. Finally, the tests are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistical evidence is reported that even outside disaster periods, agents face negative consumption skewness, as well as positive inflation skewness. Quantitative implications of skewness risk for nominal loan contracts in a pure exchange economy are derived. Key modeling assumptions are Epstein-Zin preferences for traders and asymmetric distributions for consumption and inflation innovations. The model is solved using a third-order perturbation and estimated by the simulated method of moments. Results show that skewness risk accounts for 6 to 7 percent of the risk premia depending on the bond maturity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen tomado de la publicaci??n

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LIght Detection And Ranging (LIDAR) data for terrain and land surveying has contributed to many environmental, engineering and civil applications. However, the analysis of Digital Surface Models (DSMs) from complex LIDAR data is still challenging. Commonly, the first task to investigate LIDAR data point clouds is to separate ground and object points as a preparatory step for further object classification. In this paper, the authors present a novel unsupervised segmentation algorithm-skewness balancing to separate object and ground points efficiently from high resolution LIDAR point clouds by exploiting statistical moments. The results presented in this paper have shown its robustness and its potential for commercial applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, observations by a ground-based vertically pointing Doppler lidar and sonic anemometer are used to investigate the diurnal evolution of boundary-layer turbulence in cloudless, cumulus and stratocumulus conditions. When turbulence is driven primarily by surface heating, such as in cloudless and cumulus-topped boundary layers, both the vertical velocity variance and skewness follow similar profiles, on average, to previous observational studies of turbulence in convective conditions, with a peak skewness of around 0.8 in the upper third of the mixed layer. When the turbulence is driven primarily by cloud-top radiative cooling, such as in the presence of nocturnal stratocumulus, it is found that the skewness is inverted in both sign and height: its minimum value of around −0.9 occurs in the lower third of the mixed layer. The profile of variance is consistent with a cloud-top cooling rate of around 30Wm−2. This is also consistent with the evolution of the thermodynamic profile and the rate of growth of the mixed layer into the stable nocturnal boundary layer from above. In conditions where surface heating occurs simultaneously with cloud-top cooling, the skewness is found to be useful for diagnosing the source of the turbulence, suggesting that long-term Doppler lidar observations would be valuable for evaluating boundary-layer parametrization schemes. Copyright c 2009 Royal Meteorological Society

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers how trading volume impacts upon the first three moments of REIT returns. Consistent with previous studies of the broader stock market, we find that volume is a significant factor with respect to both returns and volatility. We also find evidence supportive of the Hong & Stein’s (2003) Investor Heterogeneity Theory with respect to the finding that skewness in REIT index returns is significantly related to volume. Furthermore, we also report findings that show the influence of the variability of volume with skewness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we give an asymptotic formula of order n(-1/2), where n is the sample size, for the skewness of the distributions of the maximum likelihood estimates of the parameters in exponencial family nonlinear models. We generalize the result by Cordeiro and Cordeiro ( 2001). The formula is given in matrix notation and is very suitable for computer implementation and to obtain closed form expressions for a great variety of models. Some special cases and two applications are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We give a general matrix formula for computing the second-order skewness of maximum likelihood estimators. The formula was firstly presented in a tensorial version by Bowman and Shenton (1998). Our matrix formulation has numerical advantages, since it requires only simple operations on matrices and vectors. We apply the second-order skewness formula to a normal model with a generalized parametrization and to an ARMA model. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The family of distributions proposed by Birnbaum and Saunders (1969) can be used to model lifetime data and it is widely applicable to model failure times of fatiguing materials. We give a simple matrix formula of order n(-1/2), where n is the sample size, for the skewness of the distributions of the maximum likelihood estimates of the parameters in Birnbaum-Saunders nonlinear regression models, recently introduced by Lemonte and Cordeiro (2009). The formula is quite suitable for computer implementation, since it involves only simple operations on matrices and vectors, in order to obtain closed-form skewness in a wide range of nonlinear regression models. Empirical and real applications are analyzed and discussed. (C) 2010 Elsevier B.V. All rights reserved.