27 resultados para sirtuin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic and excessive alcohol consumption is an established risk for hepatic inflammation and carcinogenesis. Luteolin is one of the most common flavonoids present in plants and has potential beneficial effects against cancer. In this study, we examined the effect and potential mechanisms of luteolin supplementation in a carcinogen initiated alcohol-promoted pre-neoplastic liver lesion mouse model. C57BL/6 mice were injected with diethylnitrosamine (DEN) [i.p. 25 mg/kg of body weight (BW)] at 14 days of age. At 8 weeks of age mice were group pair-fed with Lieber-DeCarli liquid control diet or alcoholic diet [ethanol (EtOH) diet, 27% total energy from ethanol] and supplemented with a dose of 30 mg luteolin/kg BW per day for 21 days. DEN-injected mice fed EtOH diet displayed a significant induction of pre-neoplastic lesions, a marker associated with presence of steatosis and inflammation. Dietary luteolin significantly reduced the severity and incidence of hepatic inflammatory foci and steatosis in DEN-injected mice fed EtOH diet, as well the presence of preneoplastic lesions. There was no difference on hepatic protein levels of sirtuin 1 (SIRT1) among all groups; however, luteolin supplementation significantly reversed alcohol-reduced SIRT1 activity assessed by the ratio of acetylated and total forkhead box protein O1 (FoXO1) and SIRT1 target proliferator-activated receptor gamma, coactivator 1 alpha (PGC1α). Dietary intake of luteolin prevents alcohol promoted pre-neoplastic lesions, potentially mediated by SIRT1 signaling pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Funding: The Scottish Government's Rural and Environment Science and Analytical Services Division.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through recent advances in high-throughput mass spectrometry it has become evident that post-translational N-(epsilon)-lysine-acetylation is a modification found on thousands of proteins of all cellular compartments and all essential physiological processes. Many aspects in the biology of lysine-acetylation are poorly understood, including its regulation by lysine-acetyltransferases and lysine-deacetylases (KDACs). Here, the role of this modification was investigated for the small GTP-binding protein Ran, which, inter alia, is essential for the regulation of nucleocytoplasmic transport. To this end, site-specifically acetylated Ran was produced in E. coli by genetic code expansion. For five previously identified sites, Ran acetylation was tested regarding its impact on the intrinsic GTP hydrolysis rate, the assembly of export complexes (modeled in vitro with the export receptor CRM1 and the export substrate Spn1) and the interaction of Ran with its GTPase activation protein RanGAP and RanBP1. Overall, mild effects of Ran acetylation were observed for intrinsic and RanGAP-stimulated GTP hydrolysis rates. The interaction of active Ran with RanBP1 was negatively influenced by Ran acetylation at K159. Moreover, CRM1 bound to Ran acetylated at K37, K99 or K159 interacted more strongly with Spn1. Thus, lysine-acetylation interferes with essential aspects of Ran function. An in vitro screen was performed to identify potential Ran KDACs. The NAD+-dependent KDACs of the Sirtuin class showed activity towards two acetylation sites of Ran, K37 and K71. The specificity of Sirtuins was further analyzed based on an additional Ran acetylation site, K38. Since deacetylation of RanAcK38 was much slower compared to RanAcK37, di-acetylated RanAcK37/38 was tested next. The deacetylation rate of di-acetylated Ran was comparable to that of RanAcK37. Deacetylation experiments under single turnover conditions revealed that deacetylation occurs first at the K38 site in the di-acetylated RanAcK37/38 background. The ability of Sirtuins to deacetylate two adjacent AcKs was further investigated based on two proteins, which had previously been found to be di-acetylated and targeted by Sirtuins, namely the tumor suppressor protein p53 and phosphoenolpyruvate carboxykinase 1 (PEPCK1). p53 was readily deacetylated at two di-acetylation sites (K372/372 and K381/382), whereas PEPCK1 was not deacetylated in vitro. Taken together, these results have important implications for the substrate specificity of Sirtuins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Globally, obesity and diabetes (particularly type 2 diabetes) represents a major challenge to world health. Despite decades of intense research efforts, the genetic basis involved in diabetes pathogenesis & conditions associated with obesity are still poorly understood. Recent advances have led to exciting new developments implicating epigenetics as an important mechanism underpinning diabetes and obesity related disease. One epigenetic mechanism known as the "histone code" describes the idea that specific patterns of post-translational modifications to histones act like a molecular "code" recognised and used by non-histone proteins to regulate specific chromatin functions. One modification which has received significant attention is that of histone acetylation. The enzymes which regulate this modification are described as lysine acetyltransferases or KATs and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been actively targeted as a therapeutic target. Some of the known inhibitors of HDACs (HDACi) have also been shown to act as "chemical chaperones" to alleviate diabetic symptoms. In this review, we discuss the available evidence concerning the roles of HDACs in regulating chaperone function and how this may have implications in the management of diabetes. © 2009 Bentham Science Publishers Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sirtuin (Sir2) proteins being key regulators of numerous cellular processes have been, over the recent past, the subject of intense study. Sirs have been implicated in diverse physiological processes ranging from aging and cancer to neurological dysfunctions. Studies on Sir2s using tools of genetics, molecular biology, biochemistry and structural biology have provided significant insight into the diverse functions of this class of deacetylases. This apart, medicinal chemistry approaches have enabled the discovery of modulators (both activators and inhibitors) of Sir2 activity of diverse chemical structures and properties. The availability of these small molecule modulators of Sir2 activity not only has pharmacological significance but also opens up the possibility of exploiting chemical genetic approaches in understanding the role of this multi-functional enzyme in cellular processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acetylation of lysine residues is a posttranslational modification that is used by both eukaryotes and prokaryotes to regulate a variety of biological processes. Here we identify multiple substrates for the cAMP-dependent protein lysine acetyltransferase from Mycobacterium tuberculosis (KATmt). We demonstrate that a catalytically important lysine residue in a number of FadD (fatty acyl CoA synthetase) enzymes is acetylated by KATmt in a cAMP-dependent manner and that acetylation inhibits the activity of FadD enzymes. A sirtuin-like enzyme can deacetylate multiple FadDs, thus completing the regulatory cycle. Using a strain deleted for the KATmt ortholog in Mycobacterium bovis Bacillus Calmette-Guerin (BCG), we show for the first time that acetylation is dependent on intracellular cAMP levels. KATmt can utilize propionyl CoA as a substrate and, therefore, plays a critical role in alleviating propionyl CoA toxicity in mycobacteria by inactivating acyl CoA synthetase (ACS). The precision by which mycobacteria can regulate the metabolism of fatty acids in a cAMP-dependent manner appears to be unparalleled in other biological organisms and is ideally suited to adapt to the complex environment that pathogenic mycobacteria experience in the host.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acetyltransferases and deacetylases catalyze the addition and removal, respectively, of acetyl groups to the epsilon-amino group of protein lysine residues. This modification can affect the function of a protein through several means, including the recruitment of specific binding partners called acetyl-lysine readers. Acetyltransferases, deacetylases, and acetyl-lysine readers have emerged as crucial regulators of biological processes and prominent targets for the treatment of human disease. This work describes a combination of structural, biochemical, biophysical, cell-biological, and organismal studies undertaken on a set of proteins that cumulatively include all steps of the acetylation process: the acetyltransferase MEC-17, the deacetylase SIRT1, and the acetyl-lysine reader DPF2. Tubulin acetylation by MEC-17 is associated with stable, long-lived microtubule structures. We determined the crystal structure of the catalytic domain of human MEC-17 in complex with the cofactor acetyl-CoA. The structure in combination with an extensive enzymatic analysis of MEC-17 mutants identified residues for cofactor and substrate recognition and activity. A large, evolutionarily conserved hydrophobic surface patch distal to the active site was shown to be necessary for catalysis, suggesting that specificity is achieved by interactions with the alpha-tubulin substrate that extend outside of the modified surface loop. Experiments in C. elegans showed that while MEC-17 is required for touch sensitivity, MEC-17 enzymatic activity is dispensible for this behavior. SIRT1 deacetylates a wide range of substrates, including p53, NF-kappaB, FOXO transcription factors, and PGC-1-alpha, with roles in cellular processes ranging from energy metabolism to cell survival. SIRT1 activity is uniquely controlled by a C-terminal regulatory segment (CTR). Here we present crystal structures of the catalytic domain of human SIRT1 in complex with the CTR in an apo form and in complex with a cofactor and a pseudo-substrate peptide. The catalytic domain adopts the canonical sirtuin fold. The CTR forms a beta-hairpin structure that complements the beta-sheet of the NAD^+-binding domain, covering an essentially invariant, hydrophobic surface. A comparison of the apo and cofactor bound structures revealed conformational changes throughout catalysis, including a rotation of a smaller subdomain with respect to the larger NAD^+-binding subdomain. A biochemical analysis identified key residues in the active site, an inhibitory role for the CTR, and distinct structural features of the CTR that mediate binding and inhibition of the SIRT1 catalytic domain. DPF2 represses myeloid differentiation in acute myelogenous leukemia. Finally, we solved the crystal structure of the tandem PHD domain of human DPF2. We showed that DPF2 preferentially binds H3 tail peptides acetylated at Lys14, and binds H4 tail peptides with no preference for acetylation state. Through a structural and mutational analysis we identify the molecular basis of histone recognition. We propose a model for the role of DPF2 in AML and identify the DPF2 tandem PHD finger domain as a promising novel target for anti-leukemia therapeutics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiovascular disease (CVD) is a major cause of death in smokers, particularly in those with chronic obstructive pulmonary disease (COPD). Circulating endothelial progenitor cells (EPC) are required for endothelial homeostasis, and their dysfunction contributes to CVD. To investigate EPC dysfunction in smokers, we isolated and expanded blood outgrowth endothelial cells (BOEC) from peripheral blood samples from healthy nonsmokers, healthy smokers, and COPD patients. BOEC from smokers and COPD patients showed increased DNA double-strand breaks and senescence compared to nonsmokers. Senescence negatively correlated with the expression and activity of sirtuin-1 (SIRT1), a protein deacetylase that protects against DNA damage and cellular senescence. Inhibition of DNA damage response by silencing of ataxia telangiectasia mutated (ATM) kinase resulted in upregulation of SIRT1 expression and decreased senescence. Treatment of BOEC from COPD patients with the SIRT1 activator resveratrol or an ATM inhibitor (KU-55933) also rescued the senescent phenotype. Using an in vivo mouse model of angiogenesis, we demonstrated that senescent BOEC from COPD patients are dysfunctional, displaying impaired angiogenic ability and increased apoptosis compared to cells from healthy nonsmokers. Therefore, this study identifies epigenetic regulation of DNA damage and senescence as pathogenetic mechanisms linked to endothelial progenitors' dysfunction in smokers and COPD patients. These defects may contribute to vascular disease and cardiovascular events in smokers and could therefore constitute therapeutic targets for intervention. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The non-hydrolyzable alkylcarbonate analogs of O-acetyl-ADP-ribose have been synthesized from the phosphorylated ribose derivatives after coupling with AMP morpholidate promoted by mechanical grinding. The analogs were assessed for their ability to inhibit the human sirtuin homolog SIRT1. © 2013 The Royal Society of Chemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to reprogram induced pluripotent stem (iPS) cells from somatic cells may facilitate significant advances in regenerative medicine. MicroRNAs (miRNAs) are involved in a number of core biological processes, including cardiogenesis, hematopoietic lineage differentiation and oncogenesis. An improved understanding of the complex molecular signals that are required for the differentiation of iPS cells into endothelial cells (ECs) may allow specific targeting of their activity in order to enhance cell differentiation and promote tissue regeneration. The present study reports that miR‑199a is involved in EC differentiation from iPS cells. Augmented expression of miR‑199a was detected during EC differentiation, and reached higher levels during the later stages of this process. Furthermore, miR‑199a inhibited the differentiation of iPS cells into smooth muscle cells. Notably, sirtuin 1 was identified as a target of miR‑199a . Finally, the ability of miR‑199a to induce angiogenesis was evaluated in vitro, using Matrigel plugs assays. This may indicate a novel function for miR‑199a as a regulator of the phenotypic switch during vascular cell differentiation. The present study provides support to the notion that with an understanding of the molecular mechanisms underlying vascular cell differentiation, stem cell regenerative therapy may ultimately be developed as an effective treatment for cardiovascular disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Therapies that are safe, effective, and not vulnerable to developing resistance are highly desirable to counteract bacterial infections. Host-directed therapeutics is an antimicrobial approach alternative to conventional antibiotics based on perturbing host pathways subverted by pathogens during their life cycle by using host-directed drugs. In this study, we identified and evaluated the efficacy of a panel of host-directed drugs against respiratory infection by nontypeable Haemophilus influenzae (NTHi). NTHi is an opportunistic pathogen that is an important cause of exacerbation of chronic obstructive pulmonary disease (COPD). We screened for host genes differentially expressed upon infection by the clinical isolate NTHi375 by analyzing cell whole-genome expression profiling and identified a repertoire of host target candidates that were pharmacologically modulated. Based on the proposed relationship between NTHi intracellular location and persistence, we hypothesized that drugs perturbing host pathways used by NTHi to enter epithelial cells could have antimicrobial potential against NTHi infection. Interfering drugs were tested for their effects on bacterial and cellular viability, on NTHi-epithelial cell interplay, and on mouse pulmonary infection. Glucocorticoids and statins lacked in vitro and/or in vivo efficacy. Conversely, the sirtuin-1 activator resveratrol showed a bactericidal effect against NTHi, and the PDE4 inhibitor rolipram showed therapeutic efficacy by lowering NTHi375 counts intracellularly and in the lungs of infected mice. PDE4 inhibition is currently prescribed in COPD, and resveratrol is an attractive geroprotector for COPD treatment. Together, these results expand our knowledge of NTHi-triggered host subversion and frame the antimicrobial potential of rolipram and resveratrol against NTHi respiratory infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Excess plasma free fatty acids (FFA) are correlated with insulin resistance and are a risk factor for the development of type 2 diabetes. In this study we examined the effect of the polyphenol resveratrol on FF A-induced insulin resistance in skeletal muscle cells and the mechanisms involved. Incubation of L6 myotubes with the FF A palmitate significantly decreased the insulin-stimulated glucqse uptake. Importantly, the effect of palmitate was ameliorated by resveratrol. Palmitate significantly increased serine phosphorylation of IRS..; 1 and reduced insulin-stimulated Akt phosphorylation, an effect that was abolished by resveratrol. We then investigated the effect of palmitate and resveratrol on the expression and phosphorylation of JNK, mTOR, p70-S6K, and AMPK kinases. The results demonstrated that our treatments had no effect on the expression of these proteins. However, palmitate increased the phosphorylation of mTOR and p70- S6K, whereas resveratrol abolished this effect and increased the phosphorylation of AMPK. Furthermore, all effects of resveratrol were abolished with sirtuin inhibitors, sirtinol and nicotinamide. These results indicate that resveratrol ameliorated FF A-induced insulin resistance by regulating mTOR and p70-S6K phosphorylation in skeletal muscle cells, through a mechanism involving sirtuins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Au cours des maladies cardiovasculaires (MCV), il peut se produire divers problèmes de santé, telle que l’insuffisance cardiaque ou encore l’HTA. Ces phénomènes se caractérisent, entre autres, par une augmentation de synthèse d’endotheline-1 (ET-1), un neuropeptide synthétisé par les cellules endothéliales ayant un effet vasoconstricteur sur les cellules musculaires lisses vasculaires (CMLV). Ainsi, la surexpression de ce vasopeptide, mène à terme, au maintien de l’HTA aggravée des sujets, précédée ou concomitante à l’athérosclérose ou à la resténose, cliniquement illustrées par une prolifération et une migration anormale des CMLV de la media vers l’intima des vaisseaux sanguins. Parallèlement, il a été observé que la protéine sirtuine-1 (Sirt-1), membre de la famille des protéines histones déacétylases (HDAC), présente des propriétés anti-athérosclérotiques par sa capacité d’atténuer la prolifération et la migration des CMLV. Des travaux récents ont aussi montré qu’au cours de l’HTA la protéine Sirt-1 est faiblement exprimée dans les CMLV. Son implication dans le développement des pathologies vasculaires semble apparente, mais des études demeurent nécessaires pour décrire son rôle exact dans la pathogenèse des MCV. Dans cette optique, l’objectif de cette étude a été d’observer la variation d’expression de Sirt-1 dans les CMLV, isolées de l’aorte ascendante de rat, en réponse à l’ET-1. On a remarqué qu’une heure de stimulation des CMLV avec l’ET-1 induit une diminution de l’expression de Sirt-1 via l’activation des récepteurs ETA. Ces résultats suggèrent que la capacité d’ET-1 à atténuer l’expression de Sirt-1 serait un éventuel mécanisme d’action avec des effets favorisant les MCV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dans les pays industrialisés, les rétinopathies ischémiques proliférantes telles que la rétinopathie diabétique et la rétinopathie du prématuré sont les principales causes de cécité chez les individus en âge de travailler et la population pédiatrique. Ces pathologies sont caractérisées par une dégénérescence microvasculaire initiale suivie d’une hyper-vascularisaton compensatoire disproportionnée et pathologique. Les sirtuines constituent une importante famille de protéines impliquées dans le métabolisme et la réponse au stress. Plus particulièrement, sirtuine 3 (SIRT3) est une déacétylase mitochondriale primordiale qui agit au cœur du métabolisme énergétique et de l’activation de nombreuses voies métaboliques oxydatives. Nos résultats démontrent pour la première fois qu’une déficience en SIRT3 diminue la sévérité des lésions vasculaires dans le modèle murin de rétinopathie induite par l’oxygène (OIR). En plus de stimuler l’angiogénèse, l’absence de SIRT3 est aussi associée à une augmentation de la glycolyse, possiblement en activant la famille de gènes 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB). Nous suggérons que le manque de SIRT3 est impliqué dans l’effet Warburg et procure ainsi un avantage prolifératif et protecteur dans l’OIR. La présente étude propose SIRT3 comme nouvelle cible thérapeutique potentielle dans la rétinopathie du prématuré, une maladie dont les complications désastreuses persistent tout au long de la vie.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Replicative life span in Saccharomyces cerevisiae is increased by glucose (G1c) limitation [ calorie restriction (CR)] and by augmented NAD(+). Increased survival promoted by CR was attributed previously to the NAD(+)-dependent histone deacetylase activity of sirtuin family protein Sir2p but not to changes in redox state. Here we show that strains defective in NAD(+) synthesis and salvage pathways (pnc1 Delta, npt1 Delta, and bna6 Delta) exhibit decreased oxygen consumption and increased mitochondrial H2O2 release, reversed over time by CR. These null mutant strains also present decreased chronological longevity in a manner rescued by CR. Furthermore, we observed that changes in mitochondrial H2O2 release alter cellular redox state, as attested by measurements of total, oxidized, and reduced glutathione. Surprisingly, our results indicate that matrix-soluble dihydrolipoyl-dehydrogenases are an important source of CR-preventable mitochondrial reactive oxygen species (ROS). Indeed, deletion of the LPD1 gene prevented oxidative stress in npt1 Delta and bna6 Delta mutants. Furthermore, pyruvate and alpha-ketoglutarate, substrates for dihydrolipoyl dehydrogenase-containing enzymes, promoted pronounced reactive oxygen release in permeabilized wild-type mitochondria. Altogether, these results substantiate the concept that mitochondrial ROS can be limited by caloric restriction and play an important role in S. cerevisiae senescence. Furthermore, these findings uncover dihydrolipoyl dehydrogenase as an important and novel source of ROS leading to life span limitation.