959 resultados para simultaneous dosing
Resumo:
Kirjallisuusosassa perehdyttiin retentioaineisiin ja täyteaineisiin sekä retentioaineiden ja rainanmuodostusolosuhteiden vaikutukseen retentioon, vedenpoistoon ja paperin ominaisuuksiin. Tarkemmin kirjallisuusosassa keskityttiin täyteaineiden esiflokkaukseen, retentiopolymeerin adsorptioon sekä retentiopolymeerien ja täyteaineiden annostelutapoihin. Kokeellisessa osassa tutkittiin sarjaa retentiopolymeerejä, joiden varaustiheys ja moolimassa muuttuivat. Yksi polymeereistä oli kahdesta polymeeristävalmistettu suoladispersio ja yksi modifioitu kationinen PAM. Näillä polymeereillä käytiin läpi koesarjoja, joissa muutettiin täyteaineen annosteluaikaa retentiopolymeerin annosteluajan pysyessä vakiona. Lähinnä vertailtiin keskenään perinteistä annostelua, jossa täyteaine annosteltiin paljon ennen retentiopolymeeriä,ja yhtäaikaista annostelua, jossa molemmat annosteltiin yhtä aikaa lähellä perälaatikkoa. Kokeet tehtiin MBF-laitteella, jolla pystytään paperikonetta vastaaviin pulsaatiotaajuuksiin ja sillä voidaan valmistaa tasoviirakoneella valmistetunpaperin kaltaisia laboratorioarkkeja. Valmistetuista arkeista tutkittiin retentioita ja paperiteknisiä ominaisuuksia. Laboratoriokokeiden perusteella yhtäaikainen annostelu antoi paremmat täyteaineretentiot verrattaessa perinteiseen annosteluun lähes kaikissa koesarjoissa. Varsinkin lyhytketjuiset polymeerit näyttivättoimivan hyvin yhtäaikaisannostelulla, mikä saattaisi johtua siitä, että lyhyt reagointiaika sulpun kanssa on lyhytketjuisille polymeereille edullinen, sillä silloin polymeeriketjun konformaatio ei ehdi asettua liian alhaiseksi ja ketjun toimintakyky säilyy parempana. Polymeerin varaustiheyden kasvaessa riittävästi laski täyteaineretentio seuraavissa tapauksissa: SC-massa + kaoliini ja SC-massa +GCC kummallakin annostelulla sekä SC-massa + PCC A perinteisellä annostelulla. Hienopaperimassalla samaa trendiä noudatti täyteaine GCC kummallakin annostelulla, kun taas PCC H:ta käytettäessä paranivat täyteaineretentiot molemmilla annosteluilla. Retentiopolymeerin moolimassan kasvaessa riittävästi kääntyi täyteaineretentio laskuun täyteaineilla GCC ja kaoliini, kun käytettiin SC-massaa. Hienopaperimassalla GCC noudatti tätä samaa taipumusta. Sen sijaan SC-massalla PCC A:takäytettäessä täyteaineretentio puolestaan nousi hieman moolimassan kasvaessa. Näin kävi myös hienopaperimassalla, kun täyteaineena käytettiin PCC H:ta. Käytettäessä SC-massaa, perinteisellä annostelulla saatiin parempi tai yhtä hyvä valonsironta kuin yhtäaikaisella annostelulla kaikilla täyteaineilla. Tämä saattaisi johtua siitä, että yhtäaikaisannostelulla on muodostunut suurempia täyteaineflokkeja, mikä on alentanut valoa sirottavia pintoja. Täyteaineista korkeimmat valonsirontakertoimet antoi PCC A ja alhaisimmat kaoliini. PCC A:lla oli kapein partikkelikokojakauma, mikä korottaa paperin valonsirontaa. Hienopaperimassalla valonsirontakerroin ja opasiteetti suurenivat GCC-pitoisuuden kasvaessa kummallakin annostelulla, mikä voisi johtua täyteainepartikkelien antamasta paremmasta sironnasta. Yhtäaikaisella annostelulla saavutettiin huomattavasti paremmat valonsironnan arvot perinteiseen annosteluun verrattuna. PCC H-pitoisuuden kasvaessa suurenivat myös valonsirontakerroin ja opasiteetti kummallakin annostelulla. PCC H antoi korkeammat valonsirontakertoimet kuin GCC. PCC omaa suuremman valonheijastusluvun kuin GCC, minkä vuoksi se antaa paremmat valonsirontakertoimen arvot. PCC H:n partikkelikokojakauma oli myös kapeampi kuin GCC:n, mikä mahdollisti paremman valonsironnan ja opasiteetin saavuttamisen.
Resumo:
BACKGROUND: Whole pelvis intensity modulated radiotherapy (IMRT) is increasingly being used to treat cervical cancer aiming to reduce side effects. Encouraged by this, some groups have proposed the use of simultaneous integrated boost (SIB) to target the tumor, either to get a higher tumoricidal effect or to replace brachytherapy. Nevertheless, physiological organ movement and rapid tumor regression throughout treatment might substantially reduce any benefit of this approach. PURPOSE: To evaluate the clinical target volume - simultaneous integrated boost (CTV-SIB) regression and motion during chemo-radiotherapy (CRT) for cervical cancer, and to monitor treatment progress dosimetrically and volumetrically to ensure treatment goals are met. METHODS AND MATERIALS: Ten patients treated with standard doses of CRT and brachytherapy were retrospectively re-planned using a helical Tomotherapy - SIB technique for the hypothetical scenario of this feasibility study. Target and organs at risk (OAR) were contoured on deformable fused planning-computed tomography and megavoltage computed tomography images. The CTV-SIB volume regression was determined. The center of mass (CM) was used to evaluate the degree of motion. The Dice's similarity coefficient (DSC) was used to assess the spatial overlap of CTV-SIBs between scans. A cumulative dose-volume histogram modeled estimated delivered doses. RESULTS: The CTV-SIB relative reduction was between 31 and 70%. The mean maximum CM change was 12.5, 9, and 3 mm in the superior-inferior, antero-posterior, and right-left dimensions, respectively. The CTV-SIB-DSC approached 1 in the first week of treatment, indicating almost perfect overlap. CTV-SIB-DSC regressed linearly during therapy, and by the end of treatment was 0.5, indicating 50% discordance. Two patients received less than 95% of the prescribed dose. Much higher doses to the OAR were observed. A multiple regression analysis showed a significant interaction between CTV-SIB reduction and OAR dose increase. CONCLUSIONS: The CTV-SIB had important regression and motion during CRT, receiving lower therapeutic doses than expected. The OAR had unpredictable shifts and received higher doses. The use of SIB without frequent adaptation of the treatment plan exposes cervical cancer patients to an unpredictable risk of under-dosing the target and/or overdosing adjacent critical structures. In that scenario, brachytherapy continues to be the gold standard approach.
Resumo:
The chemotherapeutic drug 5-fluorouracil (5-FU) is widely used for treating solid tumors. Response to 5-FU treatment is variable with 10-30% of patients experiencing serious toxicity partly explained by reduced activity of dihydropyrimidine dehydrogenase (DPD). DPD converts endogenous uracil (U) into 5,6-dihydrouracil (UH(2) ), and analogously, 5-FU into 5-fluoro-5,6-dihydrouracil (5-FUH(2) ). Combined quantification of U and UH(2) with 5-FU and 5-FUH(2) may provide a pre-therapeutic assessment of DPD activity and further guide drug dosing during therapy. Here, we report the development of a liquid chromatography-tandem mass spectrometry assay for simultaneous quantification of U, UH(2) , 5-FU and 5-FUH(2) in human plasma. Samples were prepared by liquid-liquid extraction with 10:1 ethyl acetate-2-propanol (v/v). The evaporated samples were reconstituted in 0.1% formic acid and 10 μL aliquots were injected into the HPLC system. Analyte separation was achieved on an Atlantis dC(18) column with a mobile phase consisting of 1.0 mm ammonium acetate, 0.5 mm formic acid and 3.3% methanol. Positively ionized analytes were detected by multiple reaction monitoring. The analytical response was linear in the range 0.01-10 μm for U, 0.1-10 μm for UH(2) , 0.1-75 μm for 5-FU and 0.75-75 μm for 5-FUH(2) , covering the expected concentration ranges in plasma. The method was validated following the FDA guidelines and applied to clinical samples obtained from ten 5-FU-treated colorectal cancer patients. The present method merges the analysis of 5-FU pharmacokinetics and DPD activity into a single assay representing a valuable tool to improve the efficacy and safety of 5-FU-based chemotherapy.
Resumo:
BACKGROUND AND OBJECTIVE Phenotyping cocktails use a combination of cytochrome P450 (CYP)-specific probe drugs to simultaneously assess the activity of different CYP isoforms. To improve the clinical applicability of CYP phenotyping, the main objectives of this study were to develop a new cocktail based on probe drugs that are widely used in clinical practice and to test whether alternative sampling methods such as collection of dried blood spots (DBS) or saliva could be used to simplify the sampling process. METHODS In a randomized crossover study, a new combination of commercially available probe drugs (the Basel cocktail) was tested for simultaneous phenotyping of CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6 and CYP3A4. Sixteen subjects received low doses of caffeine, efavirenz, losartan, omeprazole, metoprolol and midazolam in different combinations. All subjects were genotyped, and full pharmacokinetic profiles of the probe drugs and their main metabolites were determined in plasma, dried blood spots and saliva samples. RESULTS The Basel cocktail was well tolerated, and bioequivalence tests showed no evidence of mutual interactions between the probe drugs. In plasma, single timepoint metabolic ratios at 2 h (for CYP2C19 and CYP3A4) or at 8 h (for the other isoforms) after dosing showed high correlations with corresponding area under the concentration-time curve (AUC) ratios (AUC0-24h parent/AUC0-24h metabolite) and are proposed as simple phenotyping metrics. Metabolic ratios in dried blood spots (for CYP1A2 and CYP2C19) or in saliva samples (for CYP1A2) were comparable to plasma ratios and offer the option of minimally invasive or non-invasive phenotyping of these isoforms. CONCLUSIONS This new combination of phenotyping probe drugs can be used without mutual interactions. The proposed sampling timepoints have the potential to facilitate clinical application of phenotyping but require further validation in conditions of altered CYP activity. The use of DBS or saliva samples seems feasible for phenotyping of the selected CYP isoforms.
Resumo:
The objective of this research was to determine the levels of enrichment of vitamins B1, B2, B6 and B3 in different types and brands of enriched cookies. The chromatographic separation was performed in a C18 column with gradient elution and UV detection at 254 and 287 nm. The results show that only 5 of the 24 brands evaluated are in accordance with the Brazilian legislation with respect to the vitamin content declared on the labels. However, consumption of approximately 100-150 g of most of the brands supplies the recommended dietary intake for children and adults of the vitamins evaluated.
Resumo:
This study evaluated in vitro the shear bond strength (SBS) of a resin-based pit-and-fissure sealant [Fluroshield (F), Dentsply/Caulk] associated with either an etch-and-rinse [Adper Single Bond 2 (SB), 3M/ESPE] or a self-etching adhesive system [Clearfil S3 Bond (S3), Kuraray Co., Ltd.] to saliva-contaminated enamel, comparing two curing protocols: individual light curing of the adhesive system and the sealant or simultaneous curing of both materials. Mesial and distal enamel surfaces from 45 sound third molars were randomly assigned to 6 groups (n=15), according to the bonding technique: I - F was applied to 37% phosphoric acid etched enamel. The other groups were contaminated with fresh human saliva (0.01 mL; 10 s) after acid etching: II - SB and F were light cured separately; III - SB and F were light cured together; IV - S3 and F were light cured separately; V - S3 and F were light cured simultaneously; VI - F was applied to saliva-contaminated, acid-etched enamel without an intermediate bonding agent layer. SBS was tested to failure in a universal testing machine at 0.5 mm/min. Data were analyzed by one-way ANOVA and Fisher's test (α=0.05).The debonded specimens were examined with a stereomicroscope to assess the failure modes. Three representative specimens from each group were observed under scanning electron microscopy for a qualitative analysis. Mean SBS in MPa were: I-12.28 (±4.29); II-8.57 (±3.19); III-7.97 (±2.16); IV-12.56 (±3.11); V-11.45 (±3.77); and VI-7.47 (±1.99). In conclusion, individual or simultaneous curing of the intermediate bonding agent layer and the resin sealant did not seem to affect bond strength to saliva-contaminated enamel. S3/F presented significantly higher SBS than the that of the groups treated with SB etch-and-rinse adhesive system and similar SBS to that of the control group, in which the sealant was applied under ideal dry, noncontaminated conditions.
Resumo:
In this work a simple and reliable method for the simultaneous determination of Cr, Fe, Ni and V in crude oil, using emulsion sampling graphite furnace atomic absorption spectrometry is proposed. Under the best conditions, sample masses around 50 mg were weighed in polypropylene tubes and emulsified in a mixture of 0.5% (v v(-1)) hexane + 6% (m v(-1)) Triton X-100 (R). Considering the compromised conditions, the pyrolysis an atomization temperatures for the simultaneous determination of Cr, Fe, Ni and V were 1400 degrees C and 2500 degrees C, respectively. Aliquots of 20 mu L of reference solution and sample emulsion were co-injected into the graphite tube with 10 mu L of 1.0 g L(-1) Mg(NO(3))(2) as chemical modifier. The detection limits (n = 10, 3 sigma) and characteristic masses were, respectively: 0.07 mu g g(-1) and 19 pg for Cr; 2.15 mu g g(-1) and 31 pg for Fe; 1.25 mu g g(-1) and 44 pg for Ni; and 1.15 mu g g(-1) and 149 pg for V. The reliability of the proposed method was checked by fuel oil Standard Reference Material (SRMTriton X-100 (R) 1634c - NIST) analysis. The concentrations found presented no statistical differences compared to the certified values at 95% confidence level.
Resumo:
A procedure for simultaneous separation/preconcentration of copper. zinc, cadmium, and nickel in water samples, based on cloud point extraction (CPE) as a prior step to their determination by inductively coupled plasma optic emission spectrometry (ICP-OES), has been developed. The analytes reacted with 4-(2-pyridylazo)-resorcinol (PAR) at pH 5 to form hydrophobic chelates, which were separated and preconcentrated in a surfactant-rich phase of octylphenoxypolyethoxyethanol (Triton X-I 14). The parameters affecting the extraction efficiency of the proposed method, such as sample pH, complexing agent concentration, buffer amount, surfactant concentration, temperature, kinetics of complexation reaction, and incubation time were optimized and their respective values were 5, 0.6 mmol L(-1). 0.3 mL, 0.15% (w/v), 50 degrees C, 40 min, and 10 min for 15 mL of preconcentrated solution. The method presented precision (R.S.D.) between 1.3% and 2.6% (n = 9). The concentration factors with and without dilution of the surfactant-rich phase for the analytes ranged from 9.4 to 10.1 and from 94.0 to 100.1, respectively. The limits of detection (L.O.D.) obtained for copper, zinc, cadmium, and nickel were 1.2, 1.1, 1.0. and 6.3 mu g L(-1), respectively. The accuracy of the procedure was evaluated through recovery experiments on aqueous samples. (C) 2009 Published by Elsevier B.V.
Resumo:
A simultaneous optimization strategy based on a neuro-genetic approach is proposed for selection of laser induced breakdown spectroscopy operational conditions for the simultaneous determination of macronutrients (Ca, Mg and P), micro-nutrients (B, Cu, Fe, Mn and Zn), Al and Si in plant samples. A laser induced breakdown spectroscopy system equipped with a 10 Hz Q-switched Nd:YAG laser (12 ns, 532 nm, 140 mJ) and an Echelle spectrometer with intensified coupled-charge device was used. Integration time gate, delay time, amplification gain and number of pulses were optimized. Pellets of spinach leaves (NIST 1570a) were employed as laboratory samples. In order to find a model that could correlate laser induced breakdown spectroscopy operational conditions with compromised high peak areas of all elements simultaneously, a Bayesian Regularized Artificial Neural Network approach was employed. Subsequently, a genetic algorithm was applied to find optimal conditions for the neural network model, in an approach called neuro-genetic, A single laser induced breakdown spectroscopy working condition that maximizes peak areas of all elements simultaneously, was obtained with the following optimized parameters: 9.0 mu s integration time gate, 1.1 mu s delay time, 225 (a.u.) amplification gain and 30 accumulated laser pulses. The proposed approach is a useful and a suitable tool for the optimization process of such a complex analytical problem. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A flow injection (FI) micelle-mediated separation/preconcentration procedure for the determination of lead and cadmium by flame atomic absorption spectrometry (FAAS) has been proposed. The analytes reacted with 1-(2-thiazolylazo)-2-naphthol (TAN) to form hydrophobic chelates, which were extracted into the micelles of 0.05% (w/v) Triton X-114 in a solution buffered at pH 8.4. In the preconcentration stage, the micellar solution was continuously injected into a flow system with four mini-columns packed with cotton, glass wool. or TNT compresses for phase separation. The analytes-containing micelles were eluted from the mini-columns by a stream of 3 mol L(-1) HCl solution and the analytes were determined by FAAS. Chemical and flow variables affecting the preconcentration of the analytes were studied. For 15 mL. of preconcentrated solution, the enhancement factors varied between 15.1 and 20.3, the limits of detection were approximately 4.5 and 0.75 mu g L(-1) for lead and cadmium, respectively. For a solution containing 100 and 10 mu g L(-1) of lead and cadmium, respectively, the R.S.D. values varied from 1.6 to 3.2% (n = 7). The accuracy of the preconcentration system was evaluated by recovery measurements on spiked water samples. The method was susceptible to matrix effects, but these interferences were minimized by adding barium ions as masking agent in the sample solutions, and recoveries from spiked sample varied in the range of 95.1-107.3%. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Response surface methodology was used to evaluate optimal time, temperature and oxalic acid concentration for simultaneous saccharification and fermentation (SSF) of corncob particles by Pichia stipitis CBS 6054. Fifteen different conditions for pretreatment were examined in a 2(3) full factorial design with six axial points. Temperatures ranged from 132 to 180 degrees C, time from 10 to 90 min and oxalic acid loadings from 0.01 to 0.038 g/g solids. Separate maxima were found for enzymatic saccharification and hemicellulose fermentation, respectively, with the condition for maximum saccharification being significantly more severe. Ethanol production was affected by reaction temperature more than by oxalic acid and reaction time over the ranges examined. The effect of reaction temperature was significant at a 95% confidence level in its effect on ethanol production. Oxalic acid and reaction time were statistically significant at the 90% level. The highest ethanol concentration (20 g/l) was obtained after 48 h with an ethanol volumetric production rate of 0.42 g ethanol l(-1) h(-1). The ethanol yield after SSF with P. stipitis was significantly higher than predicted by sequential saccharification and fermentation of substrate pretreated under the same condition. This was attributed to the secretion of beta-glucosidase by P. stipitis. During SSF, free extracellular beta-glucosidase activity was 1.30 pNPG U/g with P. stipitis, while saccharification without the yeast was 0.66 pNPG U/g. Published by Elsevier Ltd.
Resumo:
A polyurethane packed-bed-biofilm sequential batch reactor was fed with synthetic substrate simulating the composition of UASB reactor effluents. Two distinct ammonia nitrogen concentrations (125 and 250 mg l(-1)) were supplied during two sequential long-term experiments of 160 days each (320 total). Cycles of 24 h under intermittent aeration for periods of 1 h were applied, and ethanol was added as a carbon source at the beginning of each anoxic period. Nitrite was the main oxidized nitrogen compound which accumulated only during the aerated phases of the batch cycle. A consistent decrease of nitrite concentration started always immediately after the interruption of oxygen supply and addition of the electron donor. Removal to below detection limits of all nitrogen soluble forms was always observed at the end of the 24 h cycles for both initial concentrations. Polyurethane packed-bed matrices and ethanol amendments conferred high process stability. Microbial investigation by cloning suggested that nitrification was carried out by Nitrosomonas-like species whereas denitrification was mediated by unclassified species commonly observed in denitrifying environments. The packed-bed batch bioreactor favored the simultaneous colonization of distinct microbial groups within the immobilized microbial biomass. The biofilm was capable of actively oxidizing ammonium and denitrification at high ratios in intermittent intervals within 24 h cycles. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The magnetic Barkhausen noise (MBN) is a phenomenon sensitive to several kinds of magnetic material microstructure changes, as well as to variations in material plastic deformation and stress. This fact stimulates the development of MBN-based non-destructive testing (NDT) techniques for analyzing magnetic materials, being the proposition of such a method, the main objective of the present study. The behavior of the MBN signal envelope, under simultaneous variations of carbon content and plastic deformation, is explained by the domain wall dynamics. Additionally, a non-destructive parameter for the characterization of each of these factors is proposed and validated through the experimental results. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The development of genetic maps for auto-incompatible species, such as the yellow passion fruit (Passiflora edulis Sims f.flavicarpa Deg.) is restricted due to the unfeasibility of obtaining traditional mapping populations based on inbred lines. For this reason, yellow passion fruit linkage maps were generally constructed using a strategy known as two-way pseudo-testeross, based on monoparental dominant markers segregating in a 1:1 fashion. Due to the lack of information from these markers in one of the parents, two individual (parental) maps were obtained. However, integration of these maps is essential, and biparental markers can be used for such an operation. The objective of our study was to construct an integrated molecular map for a full-sib population of yellow passion fruit combining different loci configuration generated from amplified fragment length polymorphisms (AFLPs) and microsatellite markers and using a novel approach based on simultaneous maximum-likelihood estimation of linkage and linkage phases, specially designed for outcrossing species. Of the total number of loci, approximate to 76%, 21%, 0.7%, and 2.3% did segregate in 1:1, 3:1, 1:2:1, and 1:1:1:1 ratios, respectively. Ten linkage groups (LGs) were established with a logarithm of the odds (LOD) score >= 5.0 assuming a recombination fraction : <= 0.35. On average, 24 markers were assigned per LG, representing a total map length of 1687 cM, with a marker density of 6.9 cM. No markers were placed as accessories on the map as was done with previously constructed individual maps.
Resumo:
New fast liquid chromatographic and capillary zone electrophoresis methods were developed and validated for simultaneous determination of atenolol and chlortalidone in combined dose tablets. The reversed phase HPLC method was carried out on a CN LiChrosorb (R) (125 x 4 mm, 5 mu m) column. The CZE method was carried out on an uncoated fused-silica capillary of 30 cm x 75 mu m i.d. with 25 mmol L(-1) sodium tetraborate, pH 9.4. The total analysis time was <6 and <2.5 min for HPLC and CZE methods, respectively. Both methods can be used for stability studies as well.