976 resultados para semiconducting III-V materials
Resumo:
The work presented here aims to reduce the cost of multijunction solar cell technology by developing ways to manufacture them on cheap substrates such as silicon. In particular, our main objective is the growth of III-V semiconductors on silicon substrates for photovoltaic applications. The goal is to create a GaAsP/Si virtual substrates onto which other III-V cells could be integrated with an interesting efficiency potential. This technology involves several challenges due to the difficulty of growing III-V materials on silicon. In this paper, our first work done aimed at developing such structure is presented. It was focused on the development of phosphorus diffusion models on silicon and on the preparation of an optimal silicon surface to grow on it III-V materials.
Resumo:
A series of metamorphic high electron mobility transistors (MMHEMTs) with different V/III flux ratios are grown on GaAs (001) substrates by molecular beam epitaxy (XIBE). The samples are analysed by using atomic force microscopy (AFM), Hall measurement, and low temperature photoluminescence (PL). The optimum V/III ratio in a range from 15 to 60 for the growth of MMHEMTs is found to be around 40. At this ratio, the root mean square (RMS) roughness of the material is only 2.02 nm; a room-temperature mobility and a sheet electron density are obtained to be 10610.0cm(2)/(V.s) and 3.26 x 10(12)cm(-2) respectively. These results are equivalent to those obtained for the same structure grown on InP substrate. There are two peaks in the PL spectrum of the structure, corresponding to two sub-energy levels of the In0.53Ga0.47 As quantum well. It is found that the photoluminescence intensities of the two peaks vary with the V/III ratio, for which the reasons are discussed.
Resumo:
Spontaneous emission into the lasing mode fundamentally limits laser linewidths. Reducing cavity losses provides two benefits to linewidth: (1) fewer excited carriers are needed to reach threshold, resulting in less phase-corrupting spontaneous emission into the laser mode, and (2) more photons are stored in the laser cavity, such that each individual spontaneous emission event disturbs the phase of the field less. Strong optical absorption in III-V materials causes high losses, preventing currently-available semiconductor lasers from achieving ultra-narrow linewidths. This absorption is a natural consequence of the compromise between efficient electrical and efficient optical performance in a semiconductor laser. Some of the III-V layers must be heavily doped in order to funnel excited carriers into the active region, which has the side effect of making the material strongly absorbing.
This thesis presents a new technique, called modal engineering, to remove modal energy from the lossy region and store it in an adjacent low-loss material, thereby reducing overall optical absorption. A quantum mechanical analysis of modal engineering shows that modal gain and spontaneous emission rate into the laser mode are both proportional to the normalized intensity of that mode at the active region. If optical absorption near the active region dominates the total losses of the laser cavity, shifting modal energy from the lossy region to the low-loss region will reduce modal gain, total loss, and the spontaneous emission rate into the mode by the same factor, so that linewidth decreases while the threshold inversion remains constant. The total spontaneous emission rate into all other modes is unchanged.
Modal engineering is demonstrated using the Si/III-V platform, in which light is generated in the III-V material and stored in the low-loss silicon material. The silicon is patterned as a high-Q resonator to minimize all sources of loss. Fabricated lasers employing modal engineering to concentrate light in silicon demonstrate linewidths at least 5 times smaller than lasers without modal engineering at the same pump level above threshold, while maintaining the same thresholds.
Resumo:
In conventional planar growth of bulk III-V materials, a slow growth rate favors high crystallographic quality, optical quality, and purity of the resulting material. Surprisingly, we observe exactly the opposite effect for Au-assisted GaAs nanowire growth. By employing a rapid growth rate, the resulting nanowires are markedly less tapered, are free of planar crystallographic defects, and have very high purity with minimal intrinsic dopant incorporation. Importantly, carrier lifetimes are not adversely affected. These results reveal intriguing behavior in the growth of nanoscale materials, and represent a significant advance toward the rational growth of nanowires for device applications.
Resumo:
A new method of measuring the thickness of GaN epilayers on sapphire (0 0 0 1) substrates by using double crystal X-ray diffraction was proposed. The ratio of the integrated intensity between the GaN epilayer and the sapphire substrate showed a linear relationship with the GaN epilayer thickness up to 2.12 mum. It is practical and convenient to measure the GaN epilayer thickness using this ratio, and can mostly eliminate the effect of the reabsorption, the extinction and other scattering factors of the GaN epilayers. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The main focus and concerns of this PhD thesis is the growth of III-V semiconductor nanostructures (Quantum dots (QDs) and quantum dashes) on silicon substrates using molecular beam epitaxy (MBE) technique. The investigation of influence of the major growth parameters on their basic properties (density, geometry, composition, size etc.) and the systematic characterization of their structural and optical properties are the core of the research work. The monolithic integration of III-V optoelectronic devices with silicon electronic circuits could bring enormous prospect for the existing semiconductor technology. Our challenging approach is to combine the superior passive optical properties of silicon with the superior optical emission properties of III-V material by reducing the amount of III-V materials to the very limit of the active region. Different heteroepitaxial integration approaches have been investigated to overcome the materials issues between III-V and Si. However, this include the self-assembled growth of InAs and InGaAs QDs in silicon and GaAx matrices directly on flat silicon substrate, sitecontrolled growth of (GaAs/In0,15Ga0,85As/GaAs) QDs on pre-patterned Si substrate and the direct growth of GaP on Si using migration enhanced epitaxy (MEE) and MBE growth modes. An efficient ex-situ-buffered HF (BHF) and in-situ surface cleaning sequence based on atomic hydrogen (AH) cleaning at 500 °C combined with thermal oxide desorption within a temperature range of 700-900 °C has been established. The removal of oxide desorption was confirmed by semicircular streaky reflection high energy electron diffraction (RHEED) patterns indicating a 2D smooth surface construction prior to the MBE growth. The evolution of size, density and shape of the QDs are ex-situ characterized by atomic-force microscopy (AFM) and transmission electron microscopy (TEM). The InAs QDs density is strongly increased from 108 to 1011 cm-2 at V/III ratios in the range of 15-35 (beam equivalent pressure values). InAs QD formations are not observed at temperatures of 500 °C and above. Growth experiments on (111) substrates show orientation dependent QD formation behaviour. A significant shape and size transition with elongated InAs quantum dots and dashes has been observed on (111) orientation and at higher Indium-growth rate of 0.3 ML/s. The 2D strain mapping derived from high-resolution TEM of InAs QDs embedded in silicon matrix confirmed semi-coherent and fully relaxed QDs embedded in defectfree silicon matrix. The strain relaxation is released by dislocation loops exclusively localized along the InAs/Si interfaces and partial dislocations with stacking faults inside the InAs clusters. The site controlled growth of GaAs/In0,15Ga0,85As/GaAs nanostructures has been demonstrated for the first time with 1 μm spacing and very low nominal deposition thicknesses, directly on pre-patterned Si without the use of SiO2 mask. Thin planar GaP layer was successfully grown through migration enhanced epitaxy (MEE) to initiate a planar GaP wetting layer at the polar/non-polar interface, which work as a virtual GaP substrate, for the GaP-MBE subsequently growth on the GaP-MEE layer with total thickness of 50 nm. The best root mean square (RMS) roughness value was as good as 1.3 nm. However, these results are highly encouraging for the realization of III-V optical devices on silicon for potential applications.
Resumo:
Dual-junction solar cells formed by a GaAsP or GaInP top cell and a silicon bottom cell seem to be attractive candidates to materialize the long sought-for integration of III-V materials on silicon for photovoltaic applications. Such integration would offer a cost breakthrough for photovoltaic technology, unifying the low cost of silicon and the efficiency potential of III-V multijunction solar cells. In this study, we analyze several factors influencing the performance of the bottom subcell of this dual-junction, namely, 1) the formation of the emitter as a result of the phosphorus diffusion that takes place during the prenucleation temperature ramp and during the growth of the III-V layers; 2) the degradation in surface morphology during diffusion; and 3) the quality needed for the passivation provided by the GaP layer on the emitter.
Resumo:
With the final goal of integrating III-V materials to silicon for tandem solar cells, the influence of the metal-organic vapor phase epitaxy (MOVPE) environment on the minority carrier properties of silicon wafers has been evaluated. These properties will essentially determine the photovoltaic performance of the bottom cell in a III-V-on-Si tandem solar cell device. A comparison of the base minority carrier lifetimes obtained for different thermal processes carried out in a MOVPE reactor on Czochralski silicon wafers has been carried out. The effect of the formation of the emitter by phosphorus diffusion has also been evaluated.
Resumo:
Dual-junction solar cells formed by a GaAsP or GaInP top cell and a silicon bottom cell seem to be attractive candidates to materialize the long sought-for integration of III?V materials on silicon for photovoltaic applications. When manufacturing a multi-junction solar cell on silicon, one of the first processes to be addressed is the development of the bottom subcell and, in particular, the formation of its emitter. In this study, we analyze, both experimentally and by simulations, the formation of the emitter as a result of phosphorus diffusion that takes place during the first stages of the epitaxial growth of the solar cell. Different conditions for the Metal-Organic Vapor Phase Epitaxy (MOVPE) process have been evaluated to understand the impact of each parameter, namely, temperature, phosphine partial pressure, time exposure and memory effects in the final diffusion profiles obtained. A model based on SSupremIV process simulator has been developed and validated against experimental profiles measured by ECV and SIMS to calculate P diffusion profiles in silicon formed in a MOVPE environment taking in consideration all these factors.
Resumo:
Dual-junction solar cells formed by a GaAsP or GaInP top cell and a silicon (Si) bottom cell seem to be attractive candidates to materialize the long sought-for integration of III-V materials on Si for photovoltaic (PV) applications. Such integration would offer a cost breakthrough for PV technology, unifying the low cost of Si and the efficiency potential of III-V multijunction solar cells. The optimization of the Si solar cells properties in flat-plate PV technology is well-known; nevertheless, it has been proven that the behavior of Si substrates is different when processed in an MOVPE reactor In this study, we analyze several factors influencing the bottom subcell performance, namely, 1) the emitter formation as a result of phosphorus diffusion; 2) the passivation quality provided by the GaP nucleation layer; and 3) the process impact on the bottom subcell PV properties.
Resumo:
Dual-junction solar cells formed by a GaAsP or GaInP top cell and a silicon bottom cell seem to be attractive candidates to materialize the long sought-for integration of III-V materials on silicon for photovoltaic applications. One of the first issues to be considered in the development of this structure will be the strategy to create the silicon emitter of the bottom subcell. In this study, we explore the possibility of forming the silicon emitter by phosphorus diffusion (i.e. exposing the wafer to PH3 in a MOVPE reactor) and still obtain good surface morphologies to achieve a successful III-V heteroepitaxy as occurs in conventional III-V on germanium solar cell technology. Consequently, we explore the parameter space (PH3 partial pressure, time and temperature) that is needed to create optimized emitter designs and assess the impact of such treatments on surface morphology using atomic force microscopy. Although a strong degradation of surface morphology caused by prolonged exposure of silicon to PH3 is corroborated, it is also shown that subsequent anneals under H-2 can recover silicon surface morphology and minimize its RMS roughness and the presence of pits and spikes.
Resumo:
Esta Tesis trata sobre el desarrollo y crecimiento -mediante tecnología MOVPE (del inglés: MetalOrganic Vapor Phase Epitaxy)- de células solares híbridas de semiconductores III-V sobre substratos de silicio. Esta integración pretende ofrecer una alternativa a las células actuales de III-V, que, si bien ostentan el récord de eficiencia en dispositivos fotovoltaicos, su coste es, a día de hoy, demasiado elevado para ser económicamente competitivo frente a las células convencionales de silicio. De este modo, este proyecto trata de conjugar el potencial de alta eficiencia ya demostrado por los semiconductores III-V en arquitecturas de células fotovoltaicas multiunión con el bajo coste, la disponibilidad y la abundancia del silicio. La integración de semiconductores III-V sobre substratos de silicio puede afrontarse a través de diferentes aproximaciones. En esta Tesis se ha optado por el desarrollo de células solares metamórficas de doble unión de GaAsP/Si. Mediante esta técnica, la transición entre los parámetros de red de ambos materiales se consigue por medio de la formación de defectos cristalográficos (mayoritariamente dislocaciones). La idea es confinar estos defectos durante el crecimiento de sucesivas capas graduales en composición para que la superficie final tenga, por un lado, una buena calidad estructural, y por otro, un parámetro de red adecuado. Numerosos grupos de investigación han dirigido sus esfuerzos en los últimos años en desarrollar una estructura similar a la que aquí proponemos. La mayoría de éstos se han centrado en entender los retos asociados al crecimiento de materiales III-V, con el fin de conseguir un material de alta calidad cristalográfica. Sin embargo, prácticamente ninguno de estos grupos ha prestado especial atención al desarrollo y optimización de la célula inferior de silicio, cuyo papel va a ser de gran relevancia en el funcionamiento de la célula completa. De esta forma, y con el fin de completar el trabajo hecho hasta el momento en el desarrollo de células de III-V sobre silicio, la presente Tesis se centra, fundamentalmente, en el diseño y optimización de la célula inferior de silicio, para extraer su máximo potencial. Este trabajo se ha estructurado en seis capítulos, ordenados de acuerdo al desarrollo natural de la célula inferior. Tras un capítulo de introducción al crecimiento de semiconductores III-V sobre Si, en el que se describen las diferentes alternativas para su integración; nos ocupamos de la parte experimental, comenzando con una extensa descripción y caracterización de los substratos de silicio. De este modo, en el Capítulo 2 se analizan con exhaustividad los diferentes tratamientos (tanto químicos como térmicos) que deben seguir éstos para garantizar una superficie óptima sobre la que crecer epitaxialmente el resto de la estructura. Ya centrados en el diseño de la célula inferior, el Capítulo 3 aborda la formación de la unión p-n. En primer lugar se analiza qué configuración de emisor (en términos de dopaje y espesor) es la más adecuada para sacar el máximo rendimiento de la célula inferior. En este primer estudio se compara entre las diferentes alternativas existentes para la creación del emisor, evaluando las ventajas e inconvenientes que cada aproximación ofrece frente al resto. Tras ello, se presenta un modelo teórico capaz de simular el proceso de difusión de fosforo en silicio en un entorno MOVPE por medio del software Silvaco. Mediante este modelo teórico podemos determinar qué condiciones experimentales son necesarias para conseguir un emisor con el diseño seleccionado. Finalmente, estos modelos serán validados y constatados experimentalmente mediante la caracterización por técnicas analíticas (i.e. ECV o SIMS) de uniones p-n con emisores difundidos. Uno de los principales problemas asociados a la formación del emisor por difusión de fósforo, es la degradación superficial del substrato como consecuencia de su exposición a grandes concentraciones de fosfina (fuente de fósforo). En efecto, la rugosidad del silicio debe ser minuciosamente controlada, puesto que éste servirá de base para el posterior crecimiento epitaxial y por tanto debe presentar una superficie prístina para evitar una degradación morfológica y cristalográfica de las capas superiores. En este sentido, el Capítulo 4 incluye un análisis exhaustivo sobre la degradación morfológica de los substratos de silicio durante la formación del emisor. Además, se proponen diferentes alternativas para la recuperación de la superficie con el fin de conseguir rugosidades sub-nanométricas, que no comprometan la calidad del crecimiento epitaxial. Finalmente, a través de desarrollos teóricos, se establecerá una correlación entre la degradación morfológica (observada experimentalmente) con el perfil de difusión del fósforo en el silicio y por tanto, con las características del emisor. Una vez concluida la formación de la unión p-n propiamente dicha, se abordan los problemas relacionados con el crecimiento de la capa de nucleación de GaP. Por un lado, esta capa será la encargada de pasivar la subcélula de silicio, por lo que su crecimiento debe ser regular y homogéneo para que la superficie de silicio quede totalmente pasivada, de tal forma que la velocidad de recombinación superficial en la interfaz GaP/Si sea mínima. Por otro lado, su crecimiento debe ser tal que minimice la aparición de los defectos típicos de una heteroepitaxia de una capa polar sobre un substrato no polar -denominados dominios de antifase-. En el Capítulo 5 se exploran diferentes rutinas de nucleación, dentro del gran abanico de posibilidades existentes, para conseguir una capa de GaP con una buena calidad morfológica y estructural, que será analizada mediante diversas técnicas de caracterización microscópicas. La última parte de esta Tesis está dedicada al estudio de las propiedades fotovoltaicas de la célula inferior. En ella se analiza la evolución de los tiempos de vida de portadores minoritarios de la base durante dos etapas claves en el desarrollo de la estructura Ill-V/Si: la formación de la célula inferior y el crecimiento de las capas III-V. Este estudio se ha llevado a cabo en colaboración con la Universidad de Ohio, que cuentan con una gran experiencia en el crecimiento de materiales III-V sobre silicio. Esta tesis concluye destacando las conclusiones globales del trabajo realizado y proponiendo diversas líneas de trabajo a emprender en el futuro. ABSTRACT This thesis pursues the development and growth of hybrid solar cells -through Metal Organic Vapor Phase Epitaxy (MOVPE)- formed by III-V semiconductors on silicon substrates. This integration aims to provide an alternative to current III-V cells, which, despite hold the efficiency record for photovoltaic devices, their cost is, today, too high to be economically competitive to conventional silicon cells. Accordingly, the target of this project is to link the already demonstrated efficiency potential of III-V semiconductor multijunction solar cell architectures with the low cost and unconstrained availability of silicon substrates. Within the existing alternatives for the integration of III-V semiconductors on silicon substrates, this thesis is based on the metamorphic approach for the development of GaAsP/Si dual-junction solar cells. In this approach, the accommodation of the lattice mismatch is handle through the appearance of crystallographic defects (namely dislocations), which will be confined through the incorporation of a graded buffer layer. The resulting surface will have, on the one hand a good structural quality; and on the other hand the desired lattice parameter. Different research groups have been working in the last years in a structure similar to the one here described, being most of their efforts directed towards the optimization of the heteroepitaxial growth of III-V compounds on Si, with the primary goal of minimizing the appearance of crystal defects. However, none of these groups has paid much attention to the development and optimization of the bottom silicon cell, which, indeed, will play an important role on the overall solar cell performance. In this respect, the idea of this thesis is to complete the work done so far in this field by focusing on the design and optimization of the bottom silicon cell, to harness its efficiency. This work is divided into six chapters, organized according to the natural progress of the bottom cell development. After a brief introduction to the growth of III-V semiconductors on Si substrates, pointing out the different alternatives for their integration; we move to the experimental part, which is initiated by an extensive description and characterization of silicon substrates -the base of the III-V structure-. In this chapter, a comprehensive analysis of the different treatments (chemical and thermal) required for preparing silicon surfaces for subsequent epitaxial growth is presented. Next step on the development of the bottom cell is the formation of the p-n junction itself, which is faced in Chapter 3. Firstly, the optimization of the emitter configuration (in terms of doping and thickness) is handling by analytic models. This study includes a comparison between the different alternatives for the emitter formation, evaluating the advantages and disadvantages of each approach. After the theoretical design of the emitter, it is defined (through the modeling of the P-in-Si diffusion process) a practical parameter space for the experimental implementation of this emitter configuration. The characterization of these emitters through different analytical tools (i.e. ECV or SIMS) will validate and provide experimental support for the theoretical models. A side effect of the formation of the emitter by P diffusion is the roughening of the Si surface. Accordingly, once the p-n junction is formed, it is necessary to ensure that the Si surface is smooth enough and clean for subsequent phases. Indeed, the roughness of the Si must be carefully controlled since it will be the basis for the epitaxial growth. Accordingly, after quantifying (experimentally and by theoretical models) the impact of the phosphorus on the silicon surface morphology, different alternatives for the recovery of the surface are proposed in order to achieve a sub-nanometer roughness which does not endanger the quality of the incoming III-V layers. Moving a step further in the development of the Ill-V/Si structure implies to address the challenges associated to the GaP on Si nucleation. On the one hand, this layer will provide surface passivation to the emitter. In this sense, the growth of the III-V layer must be homogeneous and continuous so the Si emitter gets fully passivated, providing a minimal surface recombination velocity at the interface. On the other hand, the growth should be such that the appearance of typical defects related to the growth of a polar layer on a non-polar substrate is minimized. Chapter 5 includes an exhaustive study of the GaP on Si nucleation process, exploring different nucleation routines for achieving a high morphological and structural quality, which will be characterized by means of different microscopy techniques. Finally, an extensive study of the photovoltaic properties of the bottom cell and its evolution during key phases in the fabrication of a MOCVD-grown III-V-on-Si epitaxial structure (i.e. the formation of the bottom cell; and the growth of III-V layers) will be presented in the last part of this thesis. This study was conducted in collaboration with The Ohio State University, who has extensive experience in the growth of III-V materials on silicon. This thesis concludes by highlighting the overall conclusions of the presented work and proposing different lines of work to be undertaken in the future.
Resumo:
This thesis describes a collection of studies into the electrical response of a III-V MOS stack comprising metal/GaGdO/GaAs layers as a function of fabrication process variables and the findings of those studies. As a result of this work, areas of improvement in the gate process module of a III-V heterostructure MOSFET were identified. Compared to traditional bulk silicon MOSFET design, one featuring a III-V channel heterostructure with a high-dielectric-constant oxide as the gate insulator provides numerous benefits, for example: the insulator can be made thicker for the same capacitance, the operating voltage can be made lower for the same current output, and improved output characteristics can be achieved without reducing the channel length further. It is known that transistors composed of III-V materials are most susceptible to damage induced by radiation and plasma processing. These devices utilise sub-10 nm gate dielectric films, which are prone to contamination, degradation and damage. Therefore, throughout the course of this work, process damage and contamination issues, as well as various techniques to mitigate or prevent those have been investigated through comparative studies of III-V MOS capacitors and transistors comprising various forms of metal gates, various thicknesses of GaGdO dielectric, and a number of GaAs-based semiconductor layer structures. Transistors which were fabricated before this work commenced, showed problems with threshold voltage control. Specifically, MOSFETs designed for normally-off (VTH > 0) operation exhibited below-zero threshold voltages. With the results obtained during this work, it was possible to gain an understanding of why the transistor threshold voltage shifts as the gate length decreases and of what pulls the threshold voltage downwards preventing normally-off device operation. Two main culprits for the negative VTH shift were found. The first was radiation damage induced by the gate metal deposition process, which can be prevented by slowing down the deposition rate. The second was the layer of gold added on top of platinum in the gate metal stack which reduces the effective work function of the whole gate due to its electronegativity properties. Since the device was designed for a platinum-only gate, this could explain the below zero VTH. This could be prevented either by using a platinum-only gate, or by matching the layer structure design and the actual gate metal used for the future devices. Post-metallisation thermal anneal was shown to mitigate both these effects. However, if post-metallisation annealing is used, care should be taken to ensure it is performed before the ohmic contacts are formed as the thermal treatment was shown to degrade the source/drain contacts. In addition, the programme of studies this thesis describes, also found that if the gate contact is deposited before the source/drain contacts, it causes a shift in threshold voltage towards negative values as the gate length decreases, because the ohmic contact anneal process affects the properties of the underlying material differently depending on whether it is covered with the gate metal or not. In terms of surface contamination; this work found that it causes device-to-device parameter variation, and a plasma clean is therefore essential. This work also demonstrated that the parasitic capacitances in the system, namely the contact periphery dependent gate-ohmic capacitance, plays a significant role in the total gate capacitance. This is true to such an extent that reducing the distance between the gate and the source/drain ohmic contacts in the device would help with shifting the threshold voltages closely towards the designed values. The findings made available by the collection of experiments performed for this work have two major applications. Firstly, these findings provide useful data in the study of the possible phenomena taking place inside the metal/GaGdO/GaAs layers and interfaces as the result of chemical processes applied to it. In addition, these findings allow recommendations as to how to best approach fabrication of devices utilising these layers.
Resumo:
Conventional Si complementary-metal-oxide-semiconductor (CMOS) scaling is fast approaching its limits. The extension of the logic device roadmap for future enhancements in transistor performance requires non-Si materials and new device architectures. III-V materials, due to their superior electron transport properties, are well poised to replace Si as the channel material beyond the 10nm technology node to mitigate the performance loss of Si transistors from further reductions in supply voltage to minimise power dissipation in logic circuits. However several key challenges, including a high quality dielectric/III-V gate stack, a low-resistance source/drain (S/D) technology, heterointegration onto a Si platform and a viable III-V p-metal-oxide-semiconductor field-effect-transistor (MOSFET), need to be addressed before III-Vs can be employed in CMOS. This Thesis specifically addressed the development and demonstration of planar III-V p-MOSFETs, to complement the n-MOSFET, thereby enabling an all III-V CMOS technology to be realised. This work explored the application of InGaAs and InGaSb material systems as the channel, in conjunction with Al2O3/metal gate stacks, for p-MOSFET development based on the buried-channel flatband device architecture. The body of work undertaken comprised material development, process module development and integration into a robust fabrication flow for the demonstration of p-channel devices. The parameter space in the design of the device layer structure, based around the III-V channel/barrier material options of Inx≥0.53Ga1-xAs/In0.52Al0.48As and Inx≥0.1Ga1-xSb/AlSb, was systematically examined to improve hole channel transport. A mobility of 433 cm2/Vs, the highest room temperature hole mobility of any InGaAs quantum-well channel reported to date, was obtained for the In0.85Ga0.15As (2.1% strain) structure. S/D ohmic contacts were developed based on thermally annealed Au/Zn/Au metallisation and validated using transmission line model test structures. The effects of metallisation thickness, diffusion barriers and de-oxidation conditions were examined. Contacts to InGaSb-channel structures were found to be sensitive to de-oxidation conditions. A fabrication process, based on a lithographically-aligned double ohmic patterning approach, was realised for deep submicron gate-to-source/drain gap (Lside) scaling to minimise the access resistance, thereby mitigating the effects of parasitic S/D series resistance on transistor performance. The developed process yielded gaps as small as 20nm. For high-k integration on GaSb, ex-situ ammonium sulphide ((NH4)2S) treatments, in the range 1%-22%, for 10min at 295K were systematically explored for improving the electrical properties of the Al2O3/GaSb interface. Electrical and physical characterisation indicated the 1% treatment to be most effective with interface trap densities in the range of 4 - 10×1012cm-2eV-1 in the lower half of the bandgap. An extended study, comprising additional immersion times at each sulphide concentration, was further undertaken to determine the surface roughness and the etching nature of the treatments on GaSb. A number of p-MOSFETs based on III-V-channels with the most promising hole transport and integration of the developed process modules were successfully demonstrated in this work. Although the non-inverted InGaAs-channel devices showed good current modulation and switch-off characteristics, several aspects of performance were non-ideal; depletion-mode operation, modest drive current (Id,sat=1.14mA/mm), double peaked transconductance (gm=1.06mS/mm), high subthreshold swing (SS=301mV/dec) and high on-resistance (Ron=845kΩ.μm). Despite demonstrating substantial improvement in the on-state metrics of Id,sat (11×), gm (5.5×) and Ron (5.6×), inverted devices did not switch-off. Scaling gate-to-source/drain gap (Lside) from 1μm down to 70nm improved Id,sat (72.4mA/mm) by a factor of 3.6 and gm (25.8mS/mm) by a factor of 4.1 in inverted InGaAs-channel devices. Well-controlled current modulation and good saturation behaviour was observed for InGaSb-channel devices. In the on-state In0.3Ga0.7Sb-channel (Id,sat=49.4mA/mm, gm=12.3mS/mm, Ron=31.7kΩ.μm) and In0.4Ga0.6Sb-channel (Id,sat=38mA/mm, gm=11.9mS/mm, Ron=73.5kΩ.μm) devices outperformed the InGaAs-channel devices. However the devices could not be switched off. These findings indicate that III-V p-MOSFETs based on InGaSb as opposed to InGaAs channels are more suited as the p-channel option for post-Si CMOS.
Resumo:
The growth of InAsxSb1-x films on (100) GaSb substrates by liquid-phase epitaxy (LPE) has been investigated and epitaxial InAs0.3Sb0.7 films with InAs0.9Sb0.09 buffer layers have been successfully obtained. The low X-ray rocking curve FHWM values of InAs0.3Sb0.7 layer shows the high quality of crystal-orientation structure. Hall measurements show that the highest electron mobility in the samples obtained is 2.9 x 10(4) cm(2) V-1 s(-1) and the carrier density is 2.78 x 10(16)cm(-3) at room temperature (RT). The In As0.3Sb0.7 films grown on (10 0) GaSb substrates exhibit excellent optical performance with a cut-off wavelength of 12 mu m. (c) 2007 Elsevier B.V. All rights reserved.