944 resultados para semi-elliptic springs
Resumo:
In this work are presented the values found with the experimental testing, in the semi-elliptic leaf spring, utilizing 24 strain gages, distributed in five leaves of springs; these values have been compared to the calculated values found with the application of Norm SAE J788 (1982). The results showed discrepancy between the values measured and calculated and that the Norm is not indicated to determine the actuating stress in any point of any leaf of the leaf spring, but due to its simplicity and quickness of the process it presents good precision for the pre-development of the product. Copyright © 2002 Society of Automotive Engineers, Inc.
Resumo:
Predictions for a 75x205mm surface semi-elliptic defect in the NESC-1 spinning cylinder test have been made using BS PD 6493:1991, the R6 procedure, non-linear cracked body finite element analysis techniques and the local approach to fracture. All the techniques agree in predicting ductile tearing near the inner surface of the cylinder followed by cleavage initiation. However they differ in the amount of ductile tearing, and the exact location and time of any cleavage event. The amount of ductile tearing decreases with increasing sophistication in the analysis, due to the drop in peak crack driving force and more explicit consideration of constraint effects. The local approach predicts a high probability of cleavage in both HAZ and base material after 190s, while the other predictions suggest that cleavage is unlikely in the HAZ due to constraint loss, but likely in the underlying base material. The timing of this event varies from ∼150s for R6 predictions to ∼250-300s using non-linear cracked body analysis.
Resumo:
A major challenge in the transmission of narrow pulses is the radiation characteristics of the antenna. Designing the front ends for UWB systems pose challenges compared to their narrow and wide band counterparts because in addition to having electrically small size, high efficiency and band width, the antenna has to have excellent transient response. The present work deals with the design of four novel antenna designs- Square Monopole, Semi-Elliptic Slot, Step and Linear Tapered slot - and an assay on their suitability in UWB Systems. Multiple resonances in the geometry are matched to UWB by redesigning the ground-patch interfaces. Techniques to avoid narrow band interference is proposed in the antenna level and their effect on a nano second pulse have also been investigated. The thesis proposes design guidelines to design the antenna on laminates of any permittivity and the analyzes are complete with results in the frequency and time domains.
Resumo:
We study boundary value problems posed in a semistrip for the elliptic sine-Gordon equation, which is the paradigm of an elliptic integrable PDE in two variables. We use the method introduced by one of the authors, which provides a substantial generalization of the inverse scattering transform and can be used for the analysis of boundary as opposed to initial-value problems. We first express the solution in terms of a 2 by 2 matrix Riemann-Hilbert problem whose \jump matrix" depends on both the Dirichlet and the Neumann boundary values. For a well posed problem one of these boundary values is an unknown function. This unknown function is characterised in terms of the so-called global relation, but in general this characterisation is nonlinear. We then concentrate on the case that the prescribed boundary conditions are zero along the unbounded sides of a semistrip and constant along the bounded side. This corresponds to a case of the so-called linearisable boundary conditions, however a major difficulty for this problem is the existence of non-integrable singularities of the function q_y at the two corners of the semistrip; these singularities are generated by the discontinuities of the boundary condition at these corners. Motivated by the recent solution of the analogous problem for the modified Helmholtz equation, we introduce an appropriate regularisation which overcomes this difficulty. Furthermore, by mapping the basic Riemann-Hilbert problem to an equivalent modified Riemann-Hilbert problem, we show that the solution can be expressed in terms of a 2 by 2 matrix Riemann-Hilbert problem whose jump matrix depends explicitly on the width of the semistrip L, on the constant value d of the solution along the bounded side, and on the residues at the given poles of a certain spectral function denoted by h. The determination of the function h remains open.
Resumo:
In this study, we investigate the problem of reconstruction of a stationary temperature field from given temperature and heat flux on a part of the boundary of a semi-infinite region containing an inclusion. This situation can be modelled as a Cauchy problem for the Laplace operator and it is an ill-posed problem in the sense of Hadamard. We propose and investigate a Landweber-Fridman type iterative method, which preserve the (stationary) heat operator, for the stable reconstruction of the temperature field on the boundary of the inclusion. In each iteration step, mixed boundary value problems for the Laplace operator are solved in the semi-infinite region. Well-posedness of these problems is investigated and convergence of the procedures is discussed. For the numerical implementation of these mixed problems an efficient boundary integral method is proposed which is based on the indirect variant of the boundary integral approach. Using this approach the mixed problems are reduced to integral equations over the (bounded) boundary of the inclusion. Numerical examples are included showing that stable and accurate reconstructions of the temperature field on the boundary of the inclusion can be obtained also in the case of noisy data. These results are compared with those obtained with the alternating iterative method.
Resumo:
Николай Кутев, Величка Милушева - Намираме експлицитно всичките би-омбилични фолирани полусиметрични повърхнини в четиримерното евклидово пространство R^4
Resumo:
This Note aims at presenting a simple and efficient procedure to derive the structure of high-order corrector estimates for the homogenization limit applied to a semi-linear elliptic equation posed in perforated domains. Our working technique relies on monotone iterations combined with formal two-scale homogenization asymptotics. It can be adapted to handle more complex scenarios including for instance nonlinearities posed at the boundary of perforations and the vectorial case, when the model equations are coupled only through the nonlinear production terms.
Resumo:
An algorithm to improve the accuracy and stability of rigid-body contact force calculation is presented. The algorithm uses a combination of analytic solutions and numerical methods to solve a spring-damper differential equation typical of a contact model. The solution method employs the recently proposed patch method, which especially suits the spring-damper differential equations. The resulting semi-analytic solution reduces the stiffness of the differential equations, while performing faster than conventional alternatives.
Resumo:
A vibration isolator is described which incorporates a near-zero-spring-rate device within its operating range. The device is an assembly of a vertical spring in parallel with two inclined springs. A low spring rate is achieved by combining the equivalent stiffness in the vertical direction of the inclined springs with the stiffness of the vertical central spring. It is shown that there is a relation between the geometry and the stiffness of the individual springs that results in a low spring rate. Computer simulation studies of a single-degree-of-freedom model for harmonic base input show that the performance of the proposed scheme is superior to that of the passive schemes with linear springs and skyhook damping configuration. The response curves show that, for small to large amplitudes of base disturbance, the system goes into resonance at low frequencies of excitation. Thus, it is possible to achieve very good isolation over a wide low-frequency band. Also, the damper force requirements for the proposed scheme are much lower than for the damper force of a skyhook configuration or a conventional linear spring with a semi-active damper.
Resumo:
Based on the isospin- and momentum-dependent transport model IBUU04, we calculated the reaction of the Sn-132+Sn-124 systems in semi-central collisions at beam energies of 400/A MeV, 600/A MeV and 800/A MeV by adopting two different density dependent symmetry energies. It was found that the proton differential elliptic flow as a function of transverse momentum is quite sensitive to the density dependence of symmetry energy, especially for the considered beam energy range. Therefore the proton differential elliptic flow may be considered as a robust probe for investigating the high density behavior of symmetry energy in intermediate energy heavy ion collisions.
Resumo:
The general forms of the conservation of momentum, temperature and potential vorticity of coastal ocean are obtained in the x-z plane for the nonlinear ocean circulation of Boussinesq fluid, and a elliptic type partial differential equations of second order are derived. Solution of the partial differential equations are obtained under the conditions that the fluid moves along the topography. The numerical results show that there exist both upwelling and downwelling along coastline that mainly depends on the large scale ocean condition. Numerically results of the upwelling (downwelling), coastal jet and temperature front zone are favorable to the observations.
Resumo:
In practice, piles are most often modelled as "Beams on Non-Linear Winkler Foundation" (also known as “p-y spring” approach) where the soil is idealised as p-y springs. These p-y springs are obtained through semi-empirical approach using element test results of the soil. For liquefied soil, a reduction factor (often termed as p-multiplier approach) is applied on a standard p-y curve for the non-liquefied condition to obtain the p-y curve liquefied soil condition. This paper presents a methodology to obtain p-y curves for liquefied soil based on element testing of liquefied soil considering physically plausible mechanisms. Validation of the proposed p-y curves is carried out through the back analysis of physical model tests.
Resumo:
There exists a well-developed body of theory based on quasi-geostrophic (QG) dynamics that is central to our present understanding of large-scale atmospheric and oceanic dynamics. An important question is the extent to which this body of theory may generalize to more accurate dynamical models. As a first step in this process, we here generalize a set of theoretical results, concerning the evolution of disturbances to prescribed basic states, to semi-geostrophic (SG) dynamics. SG dynamics, like QG dynamics, is a Hamiltonian balanced model whose evolution is described by the material conservation of potential vorticity, together with an invertibility principle relating the potential vorticity to the advecting fields. SG dynamics has features that make it a good prototype for balanced models that are more accurate than QG dynamics. In the first part of this two-part study, we derive a pseudomomentum invariant for the SG equations, and use it to obtain: (i) linear and nonlinear generalized Charney–Stern theorems for disturbances to parallel flows; (ii) a finite-amplitude local conservation law for the invariant, obeying the group-velocity property in the WKB limit; and (iii) a wave-mean-flow interaction theorem consisting of generalized Eliassen–Palm flux diagnostics, an elliptic equation for the stream-function tendency, and a non-acceleration theorem. All these results are analogous to their QG forms. The pseudomomentum invariant – a conserved second-order disturbance quantity that is associated with zonal symmetry – is constructed using a variational principle in a similar manner to the QG calculations. Such an approach is possible when the equations of motion under the geostrophic momentum approximation are transformed to isentropic and geostrophic coordinates, in which the ageostrophic advection terms are no longer explicit. Symmetry-related wave-activity invariants such as the pseudomomentum then arise naturally from the Hamiltonian structure of the SG equations. We avoid use of the so-called ‘massless layer’ approach to the modelling of isentropic gradients at the lower boundary, preferring instead to incorporate explicitly those boundary contributions into the wave-activity and stability results. This makes the analogy with QG dynamics most transparent. This paper treats the f-plane Boussinesq form of SG dynamics, and its recent extension to β-plane, compressible flow by Magnusdottir & Schubert. In the limit of small Rossby number, the results reduce to their respective QG forms. Novel features particular to SG dynamics include apparently unnoticed lateral boundary stability criteria in (i), and the necessity of including additional zonal-mean eddy correlation terms besides the zonal-mean potential vorticity fluxes in the wave-mean-flow balance in (iii). In the companion paper, wave-activity conservation laws and stability theorems based on the SG form of the pseudoenergy are presented.
Resumo:
This work presents a semi-analytical and numerical study of the perturbation caused in a spacecraft by a third-body using a double averaged analytical model with the disturbing function expanded in Legendre polynomials up to the second order. The important reason for this procedure is to eliminate terms due to the short periodic motion of the spacecraft and to show smooth curves for the evolution of the mean orbital elements for a long-time period. The aim of this study is to calculate the effect of lunar perturbations on the orbits of spacecrafts that are traveling around the Earth. An analysis of the stability of near-circular orbits is made, and a study to know under which conditions this orbit remains near circular completes this analysis. A study of the equatorial orbits is also performed. Copyright (C) 2008 R. C. Domingos et al.
Resumo:
In the present work it is presented a semi-analytical and a numerical study of the perturbation caused in a spacecraft by a third body using a double averaged analytical model with the disturbing function expanded in Legendre polynomials up to the second-order. The important reason for this procedure is to eliminate the terms due to the short time periodic motion of the spacecraft and to show smooth curves for the evolution of the mean orbital elements for a long time period. The aim of this study is to calculate the effect of lunar perturbations on the orbits of spacecrafts that are traveling around the Earth. It is presented an analysis of the stability of a near-circular orbit and a study to know under which conditions this orbit remains near-circular. A study of the equatorial orbits is also performed.