972 resultados para self-similar analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

K.S.N. wishes to thank the Council of Scientific and Industrial Research [No. 03(1264)/12/EMR-11] Government of India for the financial support.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the advent of wide-angle imaging of the inner heliosphere, a plethora of techniques have been developed to investigate the three-dimensional structure and kinematics of solar wind transients, such as coronal mass ejections, from their signatures in single- and multi-spacecraft imaging observations. These techniques, which range from the highly complex and computationally intensive to methods based on simple curve fitting, all have their inherent advantages and limitations. In the analysis of single-spacecraft imaging observations, much use has been made of the fixed φ fitting (FPF) and harmonic mean fitting (HMF) techniques, in which the solar wind transient is considered to be a radially propagating point source (fixed φ, FP, model) and a radially expanding circle anchored at Sun centre (harmonic mean, HM, model), respectively. Initially, we compare the radial speeds and propagation directions derived from application of the FPF and HMF techniques to a large set of STEREO/Heliospheric Imager (HI) observations. As the geometries on which these two techniques are founded constitute extreme descriptions of solar wind transients in terms of their extent along the line of sight, we describe a single-spacecraft fitting technique based on a more generalized model for which the FP and HM geometries form the limiting cases. In addition to providing estimates of a transient’s speed and propagation direction, the self-similar expansion fitting (SSEF) technique provides, in theory, the capability to estimate the transient’s angular extent in the plane orthogonal to the field of view. Using the HI observations, and also by performing a Monte Carlo simulation, we assess the potential of the SSEF technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A carpet is a metric space homeomorphic to the Sierpiński carpet. We characterize, within a certain class of examples, non-self-similar carpets supporting curve families of nontrivial modulus and supporting Poincaré inequalities. Our results yield new examples of compact doubling metric measure spaces supporting Poincaré inequalities: these examples have no manifold points, yet embed isometrically as subsets of Euclidean space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The one-dimensional motion generated in a cold, infinite, uniform plasma of density na by the absorption, in a certain plane, of a linear pulse of energy per unit time and area = 4>0t/r, 0< t< r, is considered, the analysis allows for thermal conduction and viscosity of ions and electrons, their energy exchange, and an electron heat flux limiter The resulting motion is self-similar and governed by a single nondimensional parameter a«(n0 2T/0)2/3 Detailed asymptotic results are obtained for both a < l and a > l , the general behavior of the solution for arbitrary a is discussed The analysis can be extended to the case of a plasma initially occupying a half-space, and throws light on how to optimize the hydrodynamics of laser fusion plasmas Known approximate results corresponding to motion of a plasma submitted to constant irradiation (<()) are recovered in the present work under appropriate limiting processes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The one-dimensional self-similar motion of an initially cold, half-space plasma of electron density 0,produced by the (anomalous) absorption of a laser pulse of irradiation = (j>0f/T(0< (< T) at the critical density nc(«c/«0=eanalysis allows for electron heat conduction and ion-electron energy exchange and retains three dimensionless numbers: e, Zt (ion charge number), and a = (9/c/4m,) (T/C 2n l/4>oKe)213, where k, m, are Boltzmann's constant and the ion mass, and Ke X (electron temperature)5'2 = heat conductivity. If a >e- 4 ' 3 , a deflagration wave separates an isentropic compression with a shock bounding the undisturbed plasma, and an isentropic expansion flow to the vacuum. The structures of these three regions are completely determined; in particular, the Chapman-Jouguet condition is proved and the density behind the deflagration is found. The deflagration-compression thickness ratio is large (small) for a^e- 5 ' 3(a>e- 5 ' 3 ) . The compression to expansion ratio for both energy and thickness is 0(e"2). For Z,- large, a deflagration exists even if a~e~413. Condition a>e~4'3 may be applied to pulses that are not linear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The one-dimensional self-similar motion of an initially cold, half-space plasma of electron density n,produced by the (anomalous) absorption of a laser pulse of irradiation

analysis, which allows for electron heat conduction and ion-electron energy exchange, involves three dimensionless numbers: e = nc/n0 assumed small, Z, (ion charge number), and a parameter aanalysis is also invalid for a too small. Using results previously found for a>€~4'3, a qualitative discussion of how plasma behavior changes with a, is given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the dynamics of axisymmetric, slender, viscous liquid bridges having volume close to the cylindrical one, and subjected to a small gravitational field parallel to the axis of the liquid bridge, is considered within the context of one-dimensional theories. Although the dynamics of liquid bridges has been treated through a numerical analysis in the inviscid case, numerical methods become inappropriate to study configurations close to the static stability limit because the evolution time, and thence the computing time, increases excessively. To avoid this difficulty, the problem of the evolution of these liquid bridges has been attacked through a nonlinear analysis based on the singular perturbation method and, whenever possible, the results obtained are compared with the numerical ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 2D computer simulation method of random packings is applied to sets of particles generated by a self-similar uniparametric model for particle size distributions (PSDs) in granular media. The parameter p which controls the model is the proportion of mass of particles corresponding to the left half of the normalized size interval [0,1]. First the influence on the total porosity of the parameter p is analyzed and interpreted. It is shown that such parameter, and the fractal exponent of the associated power scaling, are efficient packing parameters, but this last one is not in the way predicted in a former published work addressing an analogous research in artificial granular materials. The total porosity reaches the minimum value for p = 0.6. Limited information on the pore size distribution is obtained from the packing simulations and by means of morphological analysis methods. Results show that the range of pore sizes increases for decreasing values of p showing also different shape in the volume pore size distribution. Further research including simulations with a greater number of particles and image resolution are required to obtain finer results on the hierarchical structure of pore space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents theoretical investigation of three topics concerned with nonlinear optical pulse propagation in optical fibres. The techniques used are mathematical analysis and numerical modelling. Firstly, dispersion-managed (DM) solitons in fibre lines employing a weak dispersion map are analysed by means of a perturbation approach. In the case of small dispersion map strengths the average pulse dynamics is described by a perturbation approach (NLS) equation. Applying a perturbation theory, based on the Inverse Scattering Transform method, an analytic expression for the envelope of the DM soliton is derived. This expression correctly predicts the power enhancement arising from the dispersion management.Secondly, autosoliton transmission in DM fibre systems with periodical in-line deployment of nonlinear optical loop mirrors (NOLMs) is investigated. The use of in-line NOLMs is addressed as a general technique for all-optical passive 2R regeneration of return-to-zero data in high speed transmission system with strong dispersion management. By system optimisation, the feasibility of ultra-long single-channel and wavelength-division multiplexed data transmission at bit-rates ³ 40 Gbit s-1 in standard fibre-based systems is demonstrated. The tolerance limits of the results are defined.Thirdly, solutions of the NLS equation with gain and normal dispersion, that describes optical pulse propagation in an amplifying medium, are examined. A self-similar parabolic solution in the energy-containing core of the pulse is matched through Painlevé functions to the linear low-amplitude tails. The analysis provides a full description of the features of high-power pulses generated in an amplifying medium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this second talk on dissipative structures in fiber applications, we overview theoretical aspects of the generation, evolution and characterization of self-similar parabolic-shaped pulses in fiber amplifier media. In particular, we present a perturbation analysis that describes the structural changes induced by third-order fiber dispersion on the parabolic pulse solution of the nonlinear Schrödinger equation with gain. Promising applications of parabolic pulses in optical signal post-processing and regeneration in communication systems are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-similar optical pulses (or “similaritons”) of parabolic intensity profile can be found as asymptotic solutions of the nonlinear Schr¨odinger equation in a gain medium such as a fiber amplifier or laser resonator. These solutions represent a wide-ranging significance example of dissipative nonlinear structures in optics. Here, we address some issues related to the formation and evolution of parabolic pulses in a fiber gain medium by means of semi-analytic approaches. In particular, the effect of the third-order dispersion on the structure of the asymptotic solution is examined. Our analysis is based on the resolution of ordinary differential equations, which enable us to describe the main properties of the pulse propagation and structural characteristics observable through direct numerical simulations of the basic partial differential equation model with sufficient accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this second talk on dissipative structures in fiber applications, we overview theoretical aspects of the generation, evolution and characterization of self-similar parabolic-shaped pulses in fiber amplifier media. In particular, we present a perturbation analysis that describes the structural changes induced by third-order fiber dispersion on the parabolic pulse solution of the nonlinear Schrödinger equation with gain. Promising applications of parabolic pulses in optical signal post-processing and regeneration in communication systems are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-similar optical pulses (or “similaritons”) of parabolic intensity profile can be found as asymptotic solutions of the nonlinear Schr¨odinger equation in a gain medium such as a fiber amplifier or laser resonator. These solutions represent a wide-ranging significance example of dissipative nonlinear structures in optics. Here, we address some issues related to the formation and evolution of parabolic pulses in a fiber gain medium by means of semi-analytic approaches. In particular, the effect of the third-order dispersion on the structure of the asymptotic solution is examined. Our analysis is based on the resolution of ordinary differential equations, which enable us to describe the main properties of the pulse propagation and structural characteristics observable through direct numerical simulations of the basic partial differential equation model with sufficient accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the several kinds of services that use the Internet and data networks infra-structures, the present networks are characterized by the diversity of types of traffic that have statistical properties as complex temporal correlation and non-gaussian distribution. The networks complex temporal correlation may be characterized by the Short Range Dependence (SRD) and the Long Range Dependence - (LRD). Models as the fGN (Fractional Gaussian Noise) may capture the LRD but not the SRD. This work presents two methods for traffic generation that synthesize approximate realizations of the self-similar fGN with SRD random process. The first one employs the IDWT (Inverse Discrete Wavelet Transform) and the second the IDWPT (Inverse Discrete Wavelet Packet Transform). It has been developed the variance map concept that allows to associate the LRD and SRD behaviors directly to the wavelet transform coefficients. The developed methods are extremely flexible and allow the generation of Gaussian time series with complex statistical behaviors.