892 resultados para screw retention
Resumo:
AIM: The aim of this study was to assess the marginal fit of crowns on the Straumann (ITI) Dental Implant System with special consideration of different casting dental materials. MATERIAL AND METHODS: Sixty porcelain-fused-to-metal crowns were fabricated: 18 crowns on standard cone abutments with an impression cylinder, partially prefabricated analogs, no coping and screw-retained (A); 18 crowns on solid abutments without an impression device, no analogs, no coping and cemented (B); and 18 crowns on solid abutments using an impression transfer cap, an analog with a shoulder, no coping and cemented (C). In each group, six crowns were made on epoxy mastercasts (Bluestar), six on synthetic plaster (Moldasynt) and six on super hard stone (Fujirock). Six additional crowns were fabricated with the transversal screw retention system onto the Octa system with impression transfer caps, metal analogs, gold copings and screw-retained (D). Impregum was used as impression material. Crowns of B and C were cemented with KetacCem. Crowns of A and D were fixed with an occlusal screw torqued at 15 N cm. Crowns were embedded, cut and polished. Under a light microscope using a magnification of x 100, the distance between the crown margin (CM) and the shoulder (marginal gap, MG) and the distance between the CM and the end of the shoulder (crown length, CL) was measured. RESULTS: MGs were 15.4+/-13.2 microm (A), 21.2+/-23.1 microm (B), 11+/-12.1 microm (C) and 10.4+/-9.3 microm (D). No statistically significantly differences using either of the casting materials were observed. CLs were -21.3+/-24.8 microm (A), 3+/-28.9 microm (B), 0.5+/-22 microm (C) and 0.1+/-15.8 microm (D). Crowns were shorter on synthetic casting materials compared with stone casts (P<0.005). CONCLUSIONS: CMs fit precisely with both cemented and screw-retained versions as well as when using no, partial or full analogs.
Resumo:
PURPOSE To assess the survival outcomes and reported complications of screw- and cement-retained fixed reconstructions supported on dental implants. MATERIALS AND METHODS A Medline (PubMed), Embase, and Cochrane electronic database search from 2000 to September 2012 using MeSH and free-text terms was conducted. Selected inclusion and exclusion criteria guided the search. All studies were first reviewed by abstract and subsequently by full-text reading by two examiners independently. Data were extracted by two examiners and statistically analyzed using a random effects Poisson regression. RESULTS From 4,324 abstracts, 321 full-text articles were reviewed. Seventy-three articles were found to qualify for inclusion. Five-year survival rates of 96.03% (95% confidence interval [CI]: 93.85% to 97.43%) and 95.55% (95% CI: 92.96% to 97.19%) were calculated for cemented and screw-retained reconstructions, respectively (P = .69). Comparison of cement and screw retention showed no difference when grouped as single crowns (I-SC) (P = .10) or fixed partial dentures (I-FDP) (P = .49). The 5-year survival rate for screw-retained full-arch reconstructions was 96.71% (95% CI: 93.66% to 98.31). All-ceramic reconstruction material exhibited a significantly higher failure rate than porcelain-fused-to-metal (PFM) in cemented reconstructions (P = .01) but not when comparing screw-retained reconstructions (P = .66). Technical and biologic complications demonstrating a statistically significant difference included loss of retention (P ≤ .01), abutment loosening (P ≤ .01), porcelain fracture and/or chipping (P = .02), presence of fistula/suppuration (P ≤ .001), total technical events (P = .03), and total biologic events (P = .02). CONCLUSIONS Although no statistical difference was found between cement- and screw-retained reconstructions for survival or failure rates, screw-retained reconstructions exhibited fewer technical and biologic complications overall. There were no statistically significant differences between the failure rates of the different reconstruction types (I-SCs, I-FDPs, full-arch I-FDPs) or abutment materials (titanium, gold, ceramic). The failure rate of cemented reconstructions was not influenced by the choice of a specific cement, though cement type did influence loss of retention.
Resumo:
PURPOSE To identify the influence of fixed prosthesis type on biologic and technical complication rates in the context of screw versus cement retention. Furthermore, a multivariate analysis was conducted to determine which factors, when considered together, influence the complication and failure rates of fixed implant-supported prostheses. MATERIALS AND METHODS Electronic searches of MEDLINE (PubMed), EMBASE, and the Cochrane Library were conducted. Selected inclusion and exclusion criteria were used to limit the search. Data were analyzed statistically with simple and multivariate random-effects Poisson regressions. RESULTS Seventy-three articles qualified for inclusion in the study. Screw-retained prostheses showed a tendency toward and significantly more technical complications than cemented prostheses with single crowns and fixed partial prostheses, respectively. Resin chipping and ceramic veneer chipping had high mean event rates, at 10.04 and 8.95 per 100 years, respectively, for full-arch screwed prostheses. For "all fixed prostheses" (prosthesis type not reported or not known), significantly fewer biologic and technical complications were seen with screw retention. Multivariate analysis revealed a significantly greater incidence of technical complications with cemented prostheses. Full-arch prostheses, cantilevered prostheses, and "all fixed prostheses" had significantly higher complication rates than single crowns. A significantly greater incidence of technical and biologic complications was seen with cemented prostheses. CONCLUSION Screw-retained fixed partial prostheses demonstrated a significantly higher rate of technical complications and screw-retained full-arch prostheses demonstrated a notably high rate of veneer chipping. When "all fixed prostheses" were considered, significantly higher rates of technical and biologic complications were seen for cement-retained prostheses. Multivariate Poisson regression analysis failed to show a significant difference between screw- and cement-retained prostheses with respect to the incidence of failure but demonstrated a higher rate of technical and biologic complications for cement-retained prostheses. The incidence of technical complications was more dependent upon prosthesis and retention type than prosthesis or abutment material.
Resumo:
BACKGROUND Little information is yet available on zirconia-based prostheses supported by implants. PURPOSE To evaluate technical problems and failures of implant-supported zirconia-based prostheses with exclusive screw-retention. MATERIAL AND METHODS Consecutive patients received screw-retained zirconia-based prostheses supported by implants and were followed over a time period of 5 years. The implant placement and prosthetic rehabilitation were performed in one clinical setting, and all patients participated in the maintenance program. The treatment comprised single crowns (SCs) and fixed dental prostheses (FDPs) of three to 12 units. Screw-retention of the CAD/CAM-fabricated SCs and FDPs was performed with direct connection at the implant level. The primary outcome was the complete failure of zirconia-based prostheses; outcome measures were fracture of the framework or extensive chipping resulting in the need for refabrication. A life table analysis was performed, the cumulative survival rate (CSR) calculated, and a Kaplan-Meier curve drawn. RESULTS Two hundred and ninety-four implants supported 156 zirconia-based prostheses in 95 patients (52 men, 43 women, average age 59.1 ± 11.7 years). Sixty-five SCs and 91 FDPs were identified, comprising a total of 441 units. Fractures of the zirconia framework and extensive chipping resulted in refabrication of nine prostheses. Nearly all the prostheses (94.2%) remained in situ during the observation period. The 5-year CSR was 90.5%, and 41 prostheses (14 SCs, 27 FDPs) comprising 113 units survived for an observation time of more than 5 years. Six SCs exhibited screw loosening, and polishing of minor chipping was required for five prostheses. CONCLUSIONS This study shows that zirconia-based implant-supported fixed prostheses exhibit satisfactory treatment outcomes and that screw-retention directly at the implant level is feasible.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to perform a photoelastic analysis of stress distribution on straight and angulated implants with different crowns (screwed and cemented). Three models were made of photoelastic resin PL-2: model 1: external hexagon implant 3.75 x 10.00 mm at 0 degrees; model 2: external hexagon implant 3.75 x 10.00 mm at 17 degrees; model 3: external hexagon implant 3.75 x 10.00 mm at 30 degrees. Axial and oblique (45 degrees) load (100 N) was applied with a universal testing machine. The photoelastic fringes on the models were recorded with a digital camera and visualized in a graphic software for qualitative analysis. The axial loading generated the same pattern of stress distribution. The highest stresses were concentrated between medium and apical thirds. The oblique loading generated a similar pattern of stress distribution in the models with similar implant angulation; the highest stress was located on the cervical region opposite to implant angulation and on the apical third. It was concluded that the higher the implant angulation, the higher the stress value, independent of crown type. The screwed prostheses exhibited the highest stress concentration. The oblique load generated higher stress value and concentration than the axial load.
Resumo:
PURPOSE Clinical studies related to the long-term outcomes with implant-supported reconstructions are still sparse. The aim of this 10-year retrospective study was to assess the rate of mechanical/technical complications and failures with implant supported fixed dental prostheses (FDPs) and single crowns (SCs) in a large cohort of partially edentulous patients. MATERIALS AND METHODS The comprehensive multidisciplinary examination consisted of a medical/dental history, clinical examination, and a radiographic analysis. Prosthodontic examination evaluated the implant-supported reconstructions for mechanical/technical complications and failures, occlusal analysis, presence/absence of attrition, and location, extension, and retention type. RESULTS Out of three hundred ninety seven fixed reconstructions in three hundred three patients, two hundred sixty eight were SCs and one hundred twenty seven were FDPs. Of these three hundred ninety seven implant-supported reconstructions, 18 had failed, yielding a failure rate of 4.5% and a survival rate of 95.5% after a mean observation period of 10.75 years (range: 8.4-13.5 years). The most frequent complication was ceramic chipping (20.31%) followed by occlusal screw loosening (2.57%) and loss of retention (2.06%). No occlusal screw fracture, one abutment loosening, and two abutment fractures were noted. This resulted in a total mechanical/technical complication rate of 24.7%. The prosthetic success rate over a mean follow-up time of 10.75 years was 70.8%. Generalized attrition and FDPs were associated with statistically significantly higher rates of ceramic fractures when compared with SCs. Cantilever extensions, screw retention, anterior versus posterior, and gender did not influence the chipping rate. CONCLUSIONS After a mean exposure time of 10.75 years, high survival rates for reconstructions supported by Sand-blasted Large-grit Acid-etched implants can be expected. Ceramic chipping was the most frequent complication and was increased in dentitions with attrition and in FDPs compared with SCs.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: The aim of this study was to evaluate the effect of mechanical cycling and different misfit levels on Vicker's microhardness of retention screws for single implant-supported prostheses.Materials and Methods: Premachined UCLA abutments were cast with cobalt-chromium alloy to obtain 48 crowns divided into four groups (n = 12). The crowns presented no misfit in group A (control group) and unilateral misfits of 50 mu m, 100 mu m, and 200 mu m in groups B, C, and D, respectively. The crowns were screwed to external hexagon implants with titanium retention screws (torque of 30 N/cm), and the sets were submitted to three different periods of mechanical cycling: 2 x 10(4), 5 x 10(4), and 1 x 10(6) cycles. Screw microhardness values were measured before and after each cycling period. Data were evaluated by two-way ANOVA and Tukey's test (p < 0.05).Results: Mechanical cycling statistically reduced microhardness values of retention screws regardless of cycling periods and groups. In groups A, B, and C, initial microhardness values were statistically different from final microhardness values (p < 0.05). There was no statistically significant difference for initial screw microhardness values (p > 0.05) among the groups; however, when the groups were compared after mechanical cycling, a statistically significant difference was observed between groups B and D (p < 0.05).Conclusions: Mechanical cycling reduced the Vicker's microhardness values of the retention screws of all groups. The crowns with the highest misfit level presented the highest Vicker's microhardness values.
Resumo:
The aim of this study was to evaluate the effect of unilateral misfit at different levels on a crown-implant-retention screw system of implant-supported crowns. Hexagon castable UCLA abutments were cast in Co-Cr alloy to fabricate 48 metallic crowns divided into four groups (n = 12). Group A: crowns did not present misfit; Groups B, C and D: crowns were fabricated with unilateral misfit of 50, 100, and 200 mu m, respectively. The crowns were attached by titanium retention screw with 30 N/cm to external hexagonal osseointegrated implants embedded in acrylic resin. After 2 min, the retention screw of each replica was submitted to detorque evaluation by an analogic torque gauge. Three retention screws were used to perform detorque evaluation at each replica and the procedure was repeated twice with each screw. Each group was submitted to 72 detorque measurements. Data were evaluated by ANOVA and Tukey test (P < 0.05). All groups exhibited significant decrease (P < 0.05) in preload and the lowest decrease occurred in Group A. Groups B, C, and D were statistically significant different from Group A (P < 0.05), but there was no statistically significant difference between Groups B and D (P > 0.05). Crowns with unilateral misfit presented higher preload decrease than crowns completely fitted to osseointegrated implants.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: The aim of this study was to evaluate the effect of different levels of unilateral angular misfit on preload maintenance of retention screws of single implant-supported prostheses submitted to mechanical cycling. Materials and methods: Premachined UCLA abutments were cast with cobalt-chromium alloy to obtain 48 crowns divided into four groups (n=12). The crowns presented no misfit in Group A (control group) and unilateral misfits of 50μm, 100μm and 200μm in the groups B, C and D, respectively. The crowns were attached to external hexagon implants with a titanium retention screw with torque of 30N/cm. Oblique loading of 130N at 2Hz was applied on each replica, totalizing 5×104 and 1×106cycles. Detorque values were measured initially and after each cycling period. Data were evaluated by analysis of variance and Tukey's HSD test (p<0.05). Results: All groups presented reduced initial detorque values (p< 0.05) in comparison to the insertion torque (30. ± 0.5. N/cm) and Group A (25.18. N/cm) exhibited the lowest reduction. After mechanical cycling, all groups presented detorque values from 19.5. N/cm to 22.38. N/cm and the mechanical cycling did not statistically influence the detorque values regardless the misfit level of the replicas. Conclusion: The unilateral misfit influenced the preload maintenance only before mechanical cycling. The mechanical cycling did not influence the torque reduction. © 2010 Japan Prosthodontic Society.
Resumo:
The retaining screw of the implant-supported dental prosthesis is the weakest point of the crown/implant system. Furthermore, crown height is another important factor that may increase the lever arm. Therefore, the aim of this study was to assess the stress distribution in implant prosthetic screws with different heights of the clinical crown of the prosthesis using the method of three-dimensional finite element analysis. Three models were created with implants (3.75 mm × 10 mm) and crowns (heights of 10, 12.5 and 15 mm). The results were visualised by means of von Mises stress maps that increased the crown heights. The screw structure exhibited higher levels of stresses in the oblique load. The oblique loading resulted in higher stress concentration when compared with the axial loading. It is concluded that the increase of the crown was damaging to the stress distribution on the screw, mainly in oblique loading. © 2013 Taylor & Francis.
Resumo:
The effects of the moisture content of the raw material, extrusion temperature and screw speed on flavor retention, sensory acceptability and structure of corn grits extrudates flavored with isovaleraldehyde, ethyl butyrate and butyric acid were investigated. Higher temperature resulted in more expanded extrudates with lower density and cutting force, while higher moisture content increased ethyl butyrate retention. The most acceptable extrudates were those obtained with low moisture content, under conditions of high extrusion temperature and high screw speed, or low screw speed and low extrusion temperature, whereas the aroma intensity closest to the ideal was observed under conditions of low extrusion temperature and low moisture content of the raw material. © 2013 Elsevier Ltd.
Resumo:
Purpose: This study aimed to evaluate the role of the implant/abutment system on torque maintenance of titanium retention screws and the vertical misfit of screw-retained implant-supported crowns before and after mechanical cycling. Materials and Methods: Three groups were studied: morse taper implants with conical abutments (MTC group), external-hexagon implants with conical abutments (EHC group), and external-hexagon implants with UCLA abutments (EHU group). Metallic crowns casted in cobalt-chromium alloy were used (n = 10). Retention screws received insertion torque and, after 3 minutes, initial detorque was measured. Crowns were retightened and submitted to cyclic loading testing under oblique loading (30 degrees) of 130 +/- 10 N at 2 Hz of frequency, totaling 1 x 10(6) cycles. After cycling, final detorque was measured. Vertical misfit was measured using a stereomicroscope. Data were analyzed by analysis of variance, Tukey test, and Pearson correlation test (P < .05). Results: All detorque values were lower than the insertion torque both before and after mechanical cycling. No statistically significant difference was observed among groups before mechanical cycling. After mechanical cycling, a statistically significantly lower loss of detorque was verified in the MTC group in comparison to the EHC group. Significantly lower vertical misfit values were noted after mechanical cycling but there was no difference among groups. There was no significant correlation between detorque values and vertical misfit. Conclusions: All groups presented a significant decrease of torque before and after mechanical cycling. The morse taper connection promoted the highest torque maintenance. Mechanical cycling reduced the vertical misfit of all groups, although no significant correlation between vertical misfit and torque loss was found.