889 resultados para sampling accuracy
Resumo:
PURPOSE: To evaluate accuracy and reproducibility of flow velocity and volume measurements in a phantom and in human coronary arteries using breathhold velocity-encoded (VE) MRI with spiral k-space sampling at 3 Tesla. MATERIALS AND METHODS: Flow velocity assessment was performed using VE MRI with spiral k-space sampling. Accuracy of VE MRI was tested in vitro at five constant flow rates. Reproducibility was investigated in 19 healthy subjects (mean age 25.4 +/- 1.2 years, 11 men) by repeated acquisition in the right coronary artery (RCA). RESULTS: MRI-measured flow rates correlated strongly with volumetric collection (Pearson correlation r = 0.99; P < 0.01). Due to limited sample resolution, VE MRI overestimated the flow rate by 47% on average when nonconstricted region-of-interest segmentation was used. Using constricted region-of-interest segmentation with lumen size equal to ground-truth luminal size, less than 13% error in flow rate was found. In vivo RCA flow velocity assessment was successful in 82% of the applied studies. High interscan, intra- and inter-observer agreement was found for almost all indices describing coronary flow velocity. Reproducibility for repeated acquisitions varied by less than 16% for peak velocity values and by less than 24% for flow volumes. CONCLUSION: 3T breathhold VE MRI with spiral k-space sampling enables accurate and reproducible assessment of RCA flow velocity.
Resumo:
Mining operations around the world make extensive use of blasthole sampling for short-term planning, which has two undisputed advantages: (1) blastholes are closely spaced providing relatively high sampling density per ton, and (2) there is no additional cost since the blastholes must be drilled anyway. However, blasthole sampling usually presents poor sampling precision, and the inconstant sampling bias caused by particle size and density segregation is an even more serious problem, generally precluding representativeness. One of the main causes of this bias is a highly varying loss of fines, which can lead to both under- and over-estimation of grade depending on the ore type and the gangue. This study validates a new, modified sectorial sampler, designed to reduce the loss of fines and thereby increase sampling accuracy for narrow-diameter blasthole sampling. First results show a significantly improved estimation of gold grade as well as the minimization of the loss of fines.
Resumo:
The cortisol awakening response (CAR) is typically measured in the domestic setting. Moderate sample timing inaccuracy has been shown to result in erroneous CAR estimates and such inaccuracy has been shown partially to explain inconsistency in the CAR literature. The need for more reliable measurement of the CAR has recently been highlighted in expert consensus guidelines where it was pointed out that less than 6% of published studies provided electronic-monitoring of saliva sampling time in the post-awakening period. Analyses of a merged data-set of published studies from our laboratory are presented. To qualify for selection, both time of awakening and collection of the first sample must have been verified by electronic-monitoring and sampling commenced within 15 min of awakening. Participants (n = 128) were young (median age of 20 years) and healthy. Cortisol values were determined in the 45 min post-awakening period on 215 sampling days. On 127 days, delay between verified awakening and collection of the first sample was less than 3 min (‘no delay’ group); on 45 days there was a delay of 4–6 min (‘short delay’ group); on 43 days the delay was 7–15 min (‘moderate delay’ group). Cortisol values for verified sampling times accurately mapped on to the typical post-awakening cortisol growth curve, regardless of whether sampling deviated from desired protocol timings. This provides support for incorporating rather than excluding delayed data (up to 15 min) in CAR analyses. For this population the fitted cortisol growth curve equation predicted a mean cortisol awakening level of 6 nmols/l (±1 for 95% CI) and a mean CAR rise of 6 nmols/l (±2 for 95% CI). We also modelled the relationship between real delay and CAR magnitude, when the CAR is calculated erroneously by incorrectly assuming adherence to protocol time. Findings supported a curvilinear hypothesis in relation to effects of sample delay on the CAR. Short delays of 4–6 min between awakening and commencement of saliva sampling resulted an overestimated CAR. Moderate delays of 7–15 min were associated with an underestimated CAR. Findings emphasize the need to employ electronic-monitoring of sampling accuracy when measuring the CAR in the domestic setting.
Resumo:
OBJECTIVE: Accuracy studies of Patient Safety Indicators (PSIs) are critical but limited by the large samples required due to low occurrence of most events. We tested a sampling design based on test results (verification-biased sampling [VBS]) that minimizes the number of subjects to be verified. METHODS: We considered 3 real PSIs, whose rates were calculated using 3 years of discharge data from a university hospital and a hypothetical screen of very rare events. Sample size estimates, based on the expected sensitivity and precision, were compared across 4 study designs: random and VBS, with and without constraints on the size of the population to be screened. RESULTS: Over sensitivities ranging from 0.3 to 0.7 and PSI prevalence levels ranging from 0.02 to 0.2, the optimal VBS strategy makes it possible to reduce sample size by up to 60% in comparison with simple random sampling. For PSI prevalence levels below 1%, the minimal sample size required was still over 5000. CONCLUSIONS: Verification-biased sampling permits substantial savings in the required sample size for PSI validation studies. However, sample sizes still need to be very large for many of the rarer PSIs.
Resumo:
In order to verify Point-Centered Quarter Method (PCQM) accuracy and efficiency, using different numbers of individuals by per sampled area, in 28 quarter points in an Araucaria forest, southern Paraná, Brazil. Three variations of the PCQM were used for comparison associated to the number of sampled individual trees: standard PCQM (SD-PCQM), with four sampled individuals by point (one in each quarter), second measured (VAR1-PCQM), with eight sampled individuals by point (two in each quarter), and third measuring (VAR2-PCQM), with 16 sampled individuals by points (four in each quarter). Thirty-one species of trees were recorded by the SD-PCQM method, 48 by VAR1-PCQM and 60 by VAR2-PCQM. The level of exhaustiveness of the vegetation census and diversity index showed an increasing number of individuals considered by quadrant, indicating that VAR2-PCQM was the most accurate and efficient method when compared with VAR1-PCQM and SD-PCQM.
Resumo:
Includes bibliographical references.
Resumo:
Implementation of a Monte Carlo simulation for the solution of population balance equations (PBEs) requires choice of initial sample number (N0), number of replicates (M), and number of bins for probability distribution reconstruction (n). It is found that Squared Hellinger Distance, H2, is a useful measurement of the accuracy of Monte Carlo (MC) simulation, and can be related directly to N0, M, and n. Asymptotic approximations of H2 are deduced and tested for both one-dimensional (1-D) and 2-D PBEs with coalescence. The central processing unit (CPU) cost, C, is found in a power-law relationship, C= aMNb0, with the CPU cost index, b, indicating the weighting of N0 in the total CPU cost. n must be chosen to balance accuracy and resolution. For fixed n, M × N0 determines the accuracy of MC prediction; if b > 1, then the optimal solution strategy uses multiple replications and small sample size. Conversely, if 0 < b < 1, one replicate and a large initial sample size is preferred. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2394–2402, 2015
Resumo:
The generalized Gibbs sampler (GGS) is a recently developed Markov chain Monte Carlo (MCMC) technique that enables Gibbs-like sampling of state spaces that lack a convenient representation in terms of a fixed coordinate system. This paper describes a new sampler, called the tree sampler, which uses the GGS to sample from a state space consisting of phylogenetic trees. The tree sampler is useful for a wide range of phylogenetic applications, including Bayesian, maximum likelihood, and maximum parsimony methods. A fast new algorithm to search for a maximum parsimony phylogeny is presented, using the tree sampler in the context of simulated annealing. The mathematics underlying the algorithm is explained and its time complexity is analyzed. The method is tested on two large data sets consisting of 123 sequences and 500 sequences, respectively. The new algorithm is shown to compare very favorably in terms of speed and accuracy to the program DNAPARS from the PHYLIP package.
Resumo:
Koala (Phascolarctos cinereus) populations in eastern Australia are threatened by land clearing for agricultural and urban development. At the same time, conservation efforts are hindered by a dearth of information about inland populations. Faecal deposits offer a source of information that is readily available and easily collected non-invasively. We detail a faecal pellet sampling protocol that was developed for use in a large rangeland biogeographic region. The method samples trees in belt transects, uses a thorough search at the tree base to quickly identify trees with koala pellets under them, then estimates the abundance of faecal pellets under those trees using 1-m(2) quadrats. There was a strong linear relationship between these estimates and a complete enumeration of pellet abundance under the same trees. We evaluated the accuracy of our method in detecting trees where pellets were present by means of a misclassification index that was weighed more heavily for missed trees that had high numbers of pellets under them. This showed acceptable accuracy in all landforms except riverine, where some trees with large numbers of pellets were missed. Here, accuracy in detecting pellet presence was improved by sampling with quadrats, rather than basal searches. Finally, we developed a method to reliably age pellets and demonstrate how this protocol could be used with the faecal-standing-crop method to derive a regional estimate of absolute koala abundance.
Resumo:
Dissertação de Mestrado (Programa Doutoral em Informática)
Resumo:
The role of land cover change as a significant component of global change has become increasingly recognized in recent decades. Large databases measuring land cover change, and the data which can potentially be used to explain the observed changes, are also becoming more commonly available. When developing statistical models to investigate observed changes, it is important to be aware that the chosen sampling strategy and modelling techniques can influence results. We present a comparison of three sampling strategies and two forms of grouped logistic regression models (multinomial and ordinal) in the investigation of patterns of successional change after agricultural land abandonment in Switzerland. Results indicated that both ordinal and nominal transitional change occurs in the landscape and that the use of different sampling regimes and modelling techniques as investigative tools yield different results. Synthesis and applications. Our multimodel inference identified successfully a set of consistently selected indicators of land cover change, which can be used to predict further change, including annual average temperature, the number of already overgrown neighbouring areas of land and distance to historically destructive avalanche sites. This allows for more reliable decision making and planning with respect to landscape management. Although both model approaches gave similar results, ordinal regression yielded more parsimonious models that identified the important predictors of land cover change more efficiently. Thus, this approach is favourable where land cover change pattern can be interpreted as an ordinal process. Otherwise, multinomial logistic regression is a viable alternative.
Resumo:
Designing an efficient sampling strategy is of crucial importance for habitat suitability modelling. This paper compares four such strategies, namely, 'random', 'regular', 'proportional-stratified' and 'equal -stratified'- to investigate (1) how they affect prediction accuracy and (2) how sensitive they are to sample size. In order to compare them, a virtual species approach (Ecol. Model. 145 (2001) 111) in a real landscape, based on reliable data, was chosen. The distribution of the virtual species was sampled 300 times using each of the four strategies in four sample sizes. The sampled data were then fed into a GLM to make two types of prediction: (1) habitat suitability and (2) presence/ absence. Comparing the predictions to the known distribution of the virtual species allows model accuracy to be assessed. Habitat suitability predictions were assessed by Pearson's correlation coefficient and presence/absence predictions by Cohen's K agreement coefficient. The results show the 'regular' and 'equal-stratified' sampling strategies to be the most accurate and most robust. We propose the following characteristics to improve sample design: (1) increase sample size, (2) prefer systematic to random sampling and (3) include environmental information in the design'
Resumo:
Volumetric soil water content (theta) can be evaluated in the field by direct or indirect methods. Among the direct, the gravimetric method is regarded as highly reliable and thus often preferred. Its main disadvantages are that sampling and laboratory procedures are labor intensive, and that the method is destructive, which makes resampling of a same point impossible. Recently, the time domain reflectometry (TDR) technique has become a widely used indirect, non-destructive method to evaluate theta. In this study, evaluations of the apparent dielectric number of soils (epsilon) and samplings for the gravimetrical determination of the volumetric soil water content (thetaGrav) were carried out at four sites of a Xanthic Ferralsol in Manaus - Brazil. With the obtained epsilon values, theta was estimated using empirical equations (thetaTDR), and compared with thetaGrav derived from disturbed and undisturbed samples. The main objective of this study was the comparison of thetaTDR estimates of horizontally as well as vertically inserted probes with the thetaGrav values determined by disturbed and undisturbed samples. Results showed that thetaTDR estimates of vertically inserted probes and the average of horizontally measured layers were only slightly and insignificantly different. However, significant differences were found between the thetaTDR estimates of different equations and between disturbed and undisturbed samples in the thetaGrav determinations. The use of the theoretical Knight et al. model, which permits an evaluation of the soil volume assessed by TDR probes, is also discussed. It was concluded that the TDR technique, when properly calibrated, permits in situ, nondestructive measurements of q in Xanthic Ferralsols of similar accuracy as the gravimetric method.
Resumo:
The sampling scheme is essential in the investigation of the spatial variability of soil properties in Soil Science studies. The high costs of sampling schemes optimized with additional sampling points for each physical and chemical soil property, prevent their use in precision agriculture. The purpose of this study was to obtain an optimal sampling scheme for physical and chemical property sets and investigate its effect on the quality of soil sampling. Soil was sampled on a 42-ha area, with 206 geo-referenced points arranged in a regular grid spaced 50 m from each other, in a depth range of 0.00-0.20 m. In order to obtain an optimal sampling scheme for every physical and chemical property, a sample grid, a medium-scale variogram and the extended Spatial Simulated Annealing (SSA) method were used to minimize kriging variance. The optimization procedure was validated by constructing maps of relative improvement comparing the sample configuration before and after the process. A greater concentration of recommended points in specific areas (NW-SE direction) was observed, which also reflects a greater estimate variance at these locations. The addition of optimal samples, for specific regions, increased the accuracy up to 2 % for chemical and 1 % for physical properties. The use of a sample grid and medium-scale variogram, as previous information for the conception of additional sampling schemes, was very promising to determine the locations of these additional points for all physical and chemical soil properties, enhancing the accuracy of kriging estimates of the physical-chemical properties.