977 resultados para rule extraction
Resumo:
Artificial neural network (ANN) learning methods provide a robust and non-linear approach to approximating the target function for many classification, regression and clustering problems. ANNs have demonstrated good predictive performance in a wide variety of practical problems. However, there are strong arguments as to why ANNs are not sufficient for the general representation of knowledge. The arguments are the poor comprehensibility of the learned ANN, and the inability to represent explanation structures. The overall objective of this thesis is to address these issues by: (1) explanation of the decision process in ANNs in the form of symbolic rules (predicate rules with variables); and (2) provision of explanatory capability by mapping the general conceptual knowledge that is learned by the neural networks into a knowledge base to be used in a rule-based reasoning system. A multi-stage methodology GYAN is developed and evaluated for the task of extracting knowledge from the trained ANNs. The extracted knowledge is represented in the form of restricted first-order logic rules, and subsequently allows user interaction by interfacing with a knowledge based reasoner. The performance of GYAN is demonstrated using a number of real world and artificial data sets. The empirical results demonstrate that: (1) an equivalent symbolic interpretation is derived describing the overall behaviour of the ANN with high accuracy and fidelity, and (2) a concise explanation is given (in terms of rules, facts and predicates activated in a reasoning episode) as to why a particular instance is being classified into a certain category.
Resumo:
Rule extraction from neural network algorithms have been investigated for two decades and there have been significant applications. Despite this level of success, rule extraction from neural network methods are generally not part of data mining tools, and a significant commercial breakthrough may still be some time away. This paper briefly reviews the state-of-the-art and points to some of the obstacles, namely a lack of evaluation techniques in experiments and larger benchmark data sets. A significant new development is the view that rule extraction from neural networks is an interactive process which actively involves the user. This leads to the application of assessment and evaluation techniques from information retrieval which may lead to a range of new methods.
Resumo:
In this paper, pattern classification problem in tool wear monitoring is solved using nature inspired techniques such as Genetic Programming(GP) and Ant-Miner (AM). The main advantage of GP and AM is their ability to learn the underlying data relationships and express them in the form of mathematical equation or simple rules. The extraction of knowledge from the training data set using GP and AM are in the form of Genetic Programming Classifier Expression (GPCE) and rules respectively. The GPCE and AM extracted rules are then applied to set of data in the testing/validation set to obtain the classification accuracy. A major attraction in GP evolved GPCE and AM based classification is the possibility of obtaining an expert system like rules that can be directly applied subsequently by the user in his/her application. The performance of the data classification using GP and AM is as good as the classification accuracy obtained in the earlier study.
Resumo:
This paper shows how knowledge, in the form of fuzzy rules, can be derived from a self-organizing supervised learning neural network called fuzzy ARTMAP. Rule extraction proceeds in two stages: pruning removes those recognition nodes whose confidence index falls below a selected threshold; and quantization of continuous learned weights allows the final system state to be translated into a usable set of rules. Simulations on a medical prediction problem, the Pima Indian Diabetes (PID) database, illustrate the method. In the simulations, pruned networks about 1/3 the size of the original actually show improved performance. Quantization yields comprehensible rules with only slight degradation in test set prediction performance.
Resumo:
This paper presents a method of using the so-colled "bacterial algorithm" (4,5) for extracting a fuzzy rule base from a training set. The bewly proposed bacterial evolutionary algorithm (BEA) is shown. In our application one bacterium corresponds to a fuzzy rule system.
Resumo:
Several alternative approaches have been discussed: Levenberg-Marquardt - no satisfactory convergence speed + local minimum, Bacterial algorithm - problems with large dimensionality (speed), Clustering - no safe criterion for number of clusters + dimentionality problem.
Resumo:
Machine learning techniques for prediction and rule extraction from artificial neural network methods are used. The hypothesis that market sentiment and IPO specific attributes are equally responsible for first-day IPO returns in the US stock market is tested. Machine learning methods used are Bayesian classifications, support vector machines, decision tree techniques, rule learners and artificial neural networks. The outcomes of the research are predictions and rules associated With first-day returns of technology IPOs. The hypothesis that first-day returns of technology IPOs are equally determined by IPO specific and market sentiment is rejected. Instead lower yielding IPOs are determined by IPO specific and market sentiment attributes, while higher yielding IPOs are largely dependent on IPO specific attributes.
Resumo:
X. Wang, J. Yang, R. Jensen and X. Liu, 'Rough Set Feature Selection and Rule Induction for Prediction of Malignancy Degree in Brain Glioma,' Computer Methods and Programs in Biomedicine, vol. 83, no. 2, pp. 147-156, 2006.
Resumo:
Artificial neural networks (ANN) have demonstrated good predictive performance in a wide range of applications. They are, however, not considered sufficient for knowledge representation because of their inability to represent the reasoning process succinctly. This paper proposes a novel methodology Gyan that represents the knowledge of a trained network in the form of restricted first-order predicate rules. The empirical results demonstrate that an equivalent symbolic interpretation in the form of rules with predicates, terms and variables can be derived describing the overall behaviour of the trained ANN with improved comprehensibility while maintaining the accuracy and fidelity of the propositional rules.
Resumo:
In the field of control systems it is common to use techniques based on model adaptation to carry out control for plants for which mathematical analysis may be intricate. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this line, this paper gives a perspective on the quality of results given by two different biologically connected learning algorithms for the design of B-spline neural networks (BNN) and fuzzy systems (FS). One approach used is the Genetic Programming (GP) for BNN design and the other is the Bacterial Evolutionary Algorithm (BEA) applied for fuzzy rule extraction. Also, the facility to incorporate a multi-objective approach to the GP algorithm is outlined, enabling the designer to obtain models more adequate for their intended use.
Resumo:
We analyze the average performance of a general class of learning algorithms for the nondeterministic polynomial time complete problem of rule extraction by a binary perceptron. The examples are generated by a rule implemented by a teacher network of similar architecture. A variational approach is used in trying to identify the potential energy that leads to the largest generalization in the thermodynamic limit. We restrict our search to algorithms that always satisfy the binary constraints. A replica symmetric ansatz leads to a learning algorithm which presents a phase transition in violation of an information theoretical bound. Stability analysis shows that this is due to a failure of the replica symmetric ansatz and the first step of replica symmetry breaking (RSB) is studied. The variational method does not determine a unique potential but it allows construction of a class with a unique minimum within each first order valley. Members of this class improve on the performance of Gibbs algorithm but fail to reach the Bayesian limit in the low generalization phase. They even fail to reach the performance of the best binary, an optimal clipping of the barycenter of version space. We find a trade-off between a good low performance and early onset of perfect generalization. Although the RSB may be locally stable we discuss the possibility that it fails to be the correct saddle point globally. ©2000 The American Physical Society.