961 resultados para rotary wing UAVs


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a disturbance attenuation controller for horizontal position stabilization for hover and automatic landings of a Rotary-wing Unmanned Aerial Vehicle (RUAV) operating in rough seas. Based on a helicopter model representing aerodynamics during the landing phase, a nonlinear state feedback H-infinity controller is designed to achieve rapid horizontal position tracking in a gusty environment. The resultant control variables are further treated in consideration of practical constraints (flapping dynamics, servo dynamics and time lag effect) for implementation purpose. The high-fidelity closed-loop simulation using parameters of the Vario helicopter verifies performance of the proposed position controller. It not only increases the disturbance attenuation capability of the RUAV, but also enables rapid position response when gusts occur. Comparative studies show that the H-infinity controller exhibits great performance improvement and can be applied to ship/RUAV landing systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper outlines an innovative and feasible flight control scheme for a rotary-wing unmanned aerial system (RUAS) with guaranteed safety and reliable flight quality in a gusty environment. The proposed control methodology aims to increase gust-attenuation capability of a RUAS to ensure improved flight performance when strong gusts occur. Based on the design of an effective estimator, an altitude controller is firstly constructed to synchronously compensate for fluctuations of the main rotor thrust which might lead to crashes in a gusty environment. Afterwards, a nonlinear state feedback controller is proposed to stabilize horizontal positions of the RUAS with gust-attenuation property. Performance of the proposed control framework is evaluated using parameters of a Vario XLC helicopter and high-fidelity simulations show that the proposed controllers can effectively reduce side-effect of gusts and demonstrate performance improvement when compared with the proportional-integral-derivative (PID) controllers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The following paper proposes a novel application of Skid-to-Turn maneuvers for fixed wing Unmanned Aerial Vehicles (UAVs) inspecting locally linear infrastructure. Fixed wing UAVs, following the design of manned aircraft, commonly employ Bank-to-Turn ma- neuvers to change heading and thus direction of travel. Whilst effective, banking an aircraft during the inspection of ground based features hinders data collection, with body fixed sen- sors angled away from the direction of turn and a panning motion induced through roll rate that can reduce data quality. By adopting Skid-to-Turn maneuvers, the aircraft can change heading whilst maintaining wings level flight, thus allowing body fixed sensors to main- tain a downward facing orientation. An Image-Based Visual Servo controller is developed to directly control the position of features as captured by onboard inspection sensors. This improves on the indirect approach taken by other tracking controllers where a course over ground directly above the feature is assumed to capture it centered in the field of view. Performance of the proposed controller is compared against that of a Bank-to-Turn tracking controller driven by GPS derived cross track error in a simulation environment developed to replicate the field of view of a body fixed camera.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The following paper proposes a novel application of Skid-to-Turn maneuvers for fixed wing Unmanned Aerial Vehicles (UAVs) inspecting locally linear infrastructure. Fixed wing UAVs, following the design of manned aircraft, traditionally employ Bank-to-Turn maneuvers to change heading and thus direction of travel. Commonly overlooked is the effect these maneuvers have on downward facing body fixed sensors, which as a result of bank, point away from the feature during turns. By adopting Skid-to-Turn maneuvers, the aircraft is able change heading whilst maintaining wings level flight, thus allowing body fixed sensors to maintain a downward facing orientation. Eliminating roll also helps to improve data quality, as sensors are no longer subjected to the swinging motion induced as they pivot about an axis perpendicular to their line of sight. Traditional tracking controllers that apply an indirect approach of capturing ground based data by flying directly overhead can also see the feature off center due to steady state pitch and roll required to stay on course. An Image Based Visual Servo controller is developed to address this issue, allowing features to be directly tracked within the image plane. Performance of the proposed controller is tested against that of a Bank-to-Turn tracking controller driven by GPS derived cross track error in a simulation environment developed to simulate the field of view of a body fixed camera.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a nonlinear gust-attenuation controller to stabilize velocities, attitudes and angular rates of a fixed-wing unmanned aerial vehicle (UAV) in the presence of wind gusts. The proposed controller aims to achieve a steady-state flight condition such that the host UAV can avoid airspace collision with other UAVs during the cruise flight. Based on the typical UAV model capturing flight aerodynamics, a nonlinear Hinf controller is developed with rapid response property in consideration of actuator constraints. Simulations are conducted for the Shadow UAV to verify performance of the proposed controller. Comparative studies with the proportional-integral derivative (PID) controllers demonstrate that the proposed controller exhibits great performance improvement in a gusty environment, making it suitable for integration into the design of flight control systems for cruise flight with safety guarantees.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an Image Based Visual Servo control design for Fixed Wing Unmanned Aerial Vehicles tracking locally linear infrastructure in the presence of wind using a body fixed imaging sensor. Visual servoing offers improved data collection by posing the tracking task as one of controlling a feature as viewed by the inspection sensor, although is complicated by the introduction of wind as aircraft heading and course angle no longer align. In this work it is shown that the effects of wind alter the desired line angle required for continuous tracking to equal the wind correction angle as would be calculated to set a desired course. A control solution is then sort by linearizing the interaction matrix about the new feature pose such that kinematics of the feature can be augmented with the lateral dynamics of the aircraft, from which a state feedback control design is developed. Simulation results are presented comparing no compensation, integral control and the proposed controller using the wind correction angle, followed by an assessment of response to atmospheric disturbances in the form of turbulence and wind gusts

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent years have witnessed increased development of small, autonomous fixed-wing Unmanned Aerial Vehicles (UAVs). In order to unlock widespread applicability of these platforms, they need to be capable of operating under a variety of environmental conditions. Due to their small size, low weight, and low speeds, they require the capability of coping with wind speeds that are approaching or even faster than the nominal airspeed. In this thesis, a nonlinear-geometric guidance strategy is presented, addressing this problem. More broadly, a methodology is proposed for the high-level control of non-holonomic unicycle-like vehicles in the presence of strong flowfields (e.g. winds, underwater currents) which may outreach the maximum vehicle speed. The proposed strategy guarantees convergence to a safe and stable vehicle configuration with respect to the flowfield, while preserving some tracking performance with respect to the target path. As an alternative approach, an algorithm based on Model Predictive Control (MPC) is developed, and a comparison between advantages and disadvantages of both approaches is drawn. Evaluations in simulations and a challenging real-world flight experiment in very windy conditions confirm the feasibility of the proposed guidance approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This PhD thesis presents the results, achieved at the Aerospace Engineering Department Laboratories of the University of Bologna, concerning the development of a small scale Rotary wing UAVs (RUAVs). In the first part of the work, a mission simulation environment for rotary wing UAVs was developed, as main outcome of the University of Bologna partnership in the CAPECON program (an EU funded research program aimed at studying the UAVs civil applications and economic effectiveness of the potential configuration solutions). The results achieved in cooperation with DLR (German Aerospace Centre) and with an helicopter industrial partners will be described. In the second part of the work, the set-up of a real small scale rotary wing platform was performed. The work was carried out following a series of subsequent logical steps from hardware selection and set-up to final autonomous flight tests. This thesis will focus mainly on the RUAV avionics package set-up, on the onboard software development and final experimental tests. The setup of the electronic package allowed recording of helicopter responses to pilot commands and provided deep insight into the small scale rotorcraft dynamics, facilitating the development of helicopter models and control systems in a Hardware In the Loop (HIL) simulator. A neested PI velocity controller1 was implemented on the onboard computer and autonomous flight tests were performed. Comparison between HIL simulation and experimental results showed good agreement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper outlines a feasible scheme to extract deck trend when a rotary-wing unmanned aerial vehicle (RUAV)approaches an oscillating deck. An extended Kalman filter (EKF) is de- veloped to fuse measurements from multiple sensors for effective estimation of the unknown deck heave motion. Also, a recursive Prony Analysis (PA) procedure is proposed to implement online curve-fitting of the estimated heave mo- tion. The proposed PA constructs an appropriate model with parameters identified using the forgetting factor recursive least square (FFRLS)method. The deck trend is then extracted by separating dominant modes. Performance of the proposed procedure is evaluated using real ship motion data, and simulation results justify the suitability of the proposed method into safe landing of RUAVs operating in a maritime environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of vision sensors (as opposed to radar and TCAS). This paper describes the development and evaluation of a real-time vision-based collision detection system suitable for fixed-wing aerial robotics. Using two fixed-wing UAVs to recreate various collision-course scenarios, we were able to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. This type of image data is extremely scarce and was invaluable in evaluating the detection performance of two candidate target detection approaches. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We overcame the challenge of achieving real-time computational speeds by exploiting the parallel processing architectures of graphics processing units found on commercially-off-the-shelf graphics devices. Our chosen GPU device suitable for integration onto UAV platforms can be expected to handle real-time processing of 1024 by 768 pixel image frames at a rate of approximately 30Hz. Flight trials using manned Cessna aircraft where all processing is performed onboard will be conducted in the near future, followed by further experiments with fully autonomous UAV platforms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Uninhabited aerial vehicles (UAVs) are a cutting-edge technology that is at the forefront of aviation/aerospace research and development worldwide. Many consider their current military and defence applications as just a token of their enormous potential. Unlocking and fully exploiting this potential will see UAVs in a multitude of civilian applications and routinely operating alongside piloted aircraft. The key to realising the full potential of UAVs lies in addressing a host of regulatory, public relation, and technological challenges never encountered be- fore. Aircraft collision avoidance is considered to be one of the most important issues to be addressed, given its safety critical nature. The collision avoidance problem can be roughly organised into three areas: 1) Sense; 2) Detect; and 3) Avoid. Sensing is concerned with obtaining accurate and reliable information about other aircraft in the air; detection involves identifying potential collision threats based on available information; avoidance deals with the formulation and execution of appropriate manoeuvres to maintain safe separation. This thesis tackles the detection aspect of collision avoidance, via the development of a target detection algorithm that is capable of real-time operation onboard a UAV platform. One of the key challenges of the detection problem is the need to provide early warning. This translates to detecting potential threats whilst they are still far away, when their presence is likely to be obscured and hidden by noise. Another important consideration is the choice of sensors to capture target information, which has implications for the design and practical implementation of the detection algorithm. The main contributions of the thesis are: 1) the proposal of a dim target detection algorithm combining image morphology and hidden Markov model (HMM) filtering approaches; 2) the novel use of relative entropy rate (RER) concepts for HMM filter design; 3) the characterisation of algorithm detection performance based on simulated data as well as real in-flight target image data; and 4) the demonstration of the proposed algorithm's capacity for real-time target detection. We also consider the extension of HMM filtering techniques and the application of RER concepts for target heading angle estimation. In this thesis we propose a computer-vision based detection solution, due to the commercial-off-the-shelf (COTS) availability of camera hardware and the hardware's relatively low cost, power, and size requirements. The proposed target detection algorithm adopts a two-stage processing paradigm that begins with an image enhancement pre-processing stage followed by a track-before-detect (TBD) temporal processing stage that has been shown to be effective in dim target detection. We compare the performance of two candidate morphological filters for the image pre-processing stage, and propose a multiple hidden Markov model (MHMM) filter for the TBD temporal processing stage. The role of the morphological pre-processing stage is to exploit the spatial features of potential collision threats, while the MHMM filter serves to exploit the temporal characteristics or dynamics. The problem of optimising our proposed MHMM filter has been examined in detail. Our investigation has produced a novel design process for the MHMM filter that exploits information theory and entropy related concepts. The filter design process is posed as a mini-max optimisation problem based on a joint RER cost criterion. We provide proof that this joint RER cost criterion provides a bound on the conditional mean estimate (CME) performance of our MHMM filter, and this in turn establishes a strong theoretical basis connecting our filter design process to filter performance. Through this connection we can intelligently compare and optimise candidate filter models at the design stage, rather than having to resort to time consuming Monte Carlo simulations to gauge the relative performance of candidate designs. Moreover, the underlying entropy concepts are not constrained to any particular model type. This suggests that the RER concepts established here may be generalised to provide a useful design criterion for multiple model filtering approaches outside the class of HMM filters. In this thesis we also evaluate the performance of our proposed target detection algorithm under realistic operation conditions, and give consideration to the practical deployment of the detection algorithm onboard a UAV platform. Two fixed-wing UAVs were engaged to recreate various collision-course scenarios to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. Based on this collected data, our proposed detection approach was able to detect targets out to distances ranging from about 400m to 900m. These distances, (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning ahead of impact that approaches the 12.5 second response time recommended for human pilots. Furthermore, readily available graphic processing unit (GPU) based hardware is exploited for its parallel computing capabilities to demonstrate the practical feasibility of the proposed target detection algorithm. A prototype hardware-in- the-loop system has been found to be capable of achieving data processing rates sufficient for real-time operation. There is also scope for further improvement in performance through code optimisations. Overall, our proposed image-based target detection algorithm offers UAVs a cost-effective real-time target detection capability that is a step forward in ad- dressing the collision avoidance issue that is currently one of the most significant obstacles preventing widespread civilian applications of uninhabited aircraft. We also highlight that the algorithm development process has led to the discovery of a powerful multiple HMM filtering approach and a novel RER-based multiple filter design process. The utility of our multiple HMM filtering approach and RER concepts, however, extend beyond the target detection problem. This is demonstrated by our application of HMM filters and RER concepts to a heading angle estimation problem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article presents a visual servoing system to follow a 3D moving object by a Micro Unmanned Aerial Vehicle (MUAV). The presented control strategy is based only on the visual information given by an adaptive tracking method based on the colour information. A visual fuzzy system has been developed for servoing the camera situated on a rotary wing MAUV, that also considers its own dynamics. This system is focused on continuously following of an aerial moving target object, maintaining it with a fixed safe distance and centred on the image plane. The algorithm is validated on real flights on outdoors scenarios, showing the robustness of the proposed systems against winds perturbations, illumination and weather changes among others. The obtained results indicate that the proposed algorithms is suitable for complex controls task, such object following and pursuit, flying in formation, as well as their use for indoor navigation

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a practical framework to synthesize multi-sensor navigation information for localization of a rotary-wing unmanned aerial vehicle (RUAV) and estimation of unknown ship positions when the RUAV approaches the landing deck. The estimation performance of the visual tracking sensor can also be improved through integrated navigation. Three different sensors (inertial navigation, Global Positioning System, and visual tracking sensor) are utilized complementarily to perform the navigation tasks for the purpose of an automatic landing. An extended Kalman filter (EKF) is developed to fuse data from various navigation sensors to provide the reliable navigation information. The performance of the fusion algorithm has been evaluated using real ship motion data. Simulation results suggest that the proposed method can be used to construct a practical navigation system for a UAV-ship landing system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study presents a disturbance attenuation controller for horizontal position stabilisation for hover and automatic landings of a rotary-wing unmanned aerial vehicle (RUAV) operating close to the landing deck in rough seas. Based on a helicopter model representing aerodynamics during the landing phase, a non-linear state feedback H∞ controller is designed to achieve rapid horizontal position tracking in a gusty environment. Practical constraints including flapping dynamics, servo dynamics and time lag effect are considered. A high-fidelity closed-loop simulation using parameters of the Vario XLC gas-turbine helicopter verifies performance of the proposed horizontal position controller. The proposed controller not only increases the disturbance attenuation capability of the RUAV, but also enables rapid position response when gusts occur. Comparative studies show that the H∞ controller exhibits performance improvement and can be applied to ship/RUAV landing systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a practical scheme to control heave motion for hover and automatic landing of a Rotary-wing Unmanned Aerial Vehicle (RUAV) in the presence of strong horizontal gusts. A heave motion model is constructed for the purpose of capturing dynamic variations of thrust due to horizontal gusts. Through construction of an effective gust estimator, a feedback-feedforward controller is developed which uses available measurements from onboard sensors. The proposed controller dynamically and synchronously compensates for aerodynamic variations of heave motion, enhancing disturbance-attenuation capability of the RUAV. Simulation results justify the reliability and efficiency of the suggested gust estimator. Moreover, flight tests conducted on our Eagle helicopter verify suitability of the proposed control strategy for small RUAVs operating in a gusty environment.