998 resultados para robot costration kit


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes Electronic Blocks, a new robot construction element designed to allow children as young as age three to build and program robotic structures. The Electronic Blocks encapsulate input, output and logic concepts in tangible elements that young children can use to create a wide variety of physical agents. The children are able to determine the behavior of these agents by the choice of blocks and the manner in which they are connected. The Electronic Blocks allow children without any knowledge of mechanical design or computer programming to create and control physically embodied robots. They facilitate the development of technological capability by enabling children to design, construct, explore and evaluate dynamic robotics systems. A study of four and five year-old children using the Electronic Blocks has demonstrated that the interface is well suited to young children. The complexity of the implementation is hidden from the children, leaving the children free to autonomously explore the functionality of the blocks. As a consequence, children are free to move their focus beyond the technology. Instead they are free to focus on the construction process, and to work on goals related to the creation of robotic behaviors and interactions. As a resource for robot building, the blocks have proved to be effective in encouraging children to create robot structures, allowing children to design and program robot behaviors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis presents a new structure of robust adaptive controller applied to mobile robots (surface mobile robot) with nonholonomic constraints. It acts in the dynamics and kinematics of the robot, and it is split in two distinct parts. The first part controls the robot dynamics, using variable structure model reference adaptive controllers. The second part controls the robot kinematics, using a position controller, whose objective is to make the robot to reach any point in the cartesian plan. The kinematic controller is based only on information about the robot configuration. A decoupling method is adopted to transform the linear model of the mobile robot, a multiple-input multiple-output system, into two decoupled single-input single-output systems, thus reducing the complexity of designing the controller for the mobile robot. After that, a variable structure model reference adaptive controller is applied to each one of the resulting systems. One of such controllers will be responsible for the robot position and the other for the leading angle, using reference signals generated by the position controller. To validate the proposed structure, some simulated and experimental results using differential drive mobile robots of a robot soccer kit are presented. The simulator uses the main characteristics of real physical system as noise and non-linearities such as deadzone and saturation. The experimental results were obtained through an C++ program applied to the robot soccer kit of Microrobot team at the LACI/UFRN. The simulated and experimental results are presented and discussed at the end of the text

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[ES]Este documento tiene la intención de presentar un Trabajo de Fin de Grado (TFG). Este proyecto consiste en una serie de herramientas que permitan el diseño, implementación y desarrollo del software de control de un robot humanoide. El proyecto se centra en la mejora de la efectividad, robustez, rendimiento y fiabilidad del software. Los cambios propuestos introducen mejoras sobre el robot comercial robo nova. En concreto la capacidad de ser modular, permitiendo de esta forma el uso total o parcial de las soluciones escogidas, ahorrando tiempo y dinero en futuros desarrollos de esta plataforma

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[ES]Este trabajo describe una serie de mejoras aplicables a un kit comercial de robot humanoide Robonova, con el fin de que este reproduzca el comportamiento cinemático del ser humano con mayor autonomía. Entre ellas destacan la implementación de sensores infrarrojos, sensores de posición, cámaras de visión y conexiones en serie de servomotores. Todo ello controlado desde un ordenador de placa reducida Raspberry Pi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de mestrado, Educação (Tecnologias de Informação e Comunicação e Educação), Universidade de Lisboa, Instituto de Educação, 2010

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En este artículo se presenta a DeBuPa (Detección Búsqueda Pateo) un humanoide de tamaño pequeño (38 cm de alto) construido con las piezas del kit Bioloid. Del kit se ha excluido la tarjeta CM-510 para sustituirla por la tarjeta controladora Arbotix, que será la que controle los 16 motores Dynamixel Ax-12+ (para mover al robot) y 2 servomotores analógicos (para mover la cámara). Además se ha agregado un mini computador Raspberry Pi, con su cámara, para que el robot pueda detectar y seguir la pelota de forma autónoma. Todos estos componentes deben ser coordinados para que se logre cumplir la tarea de detectar, seguir y patear la pelota. Por ello se hace necesaria la comunicación entre la Arbotix y la Raspberry Pi. La herramienta empleada para ello es el framework ROS (Robot Operating System). En la Raspberry Pi se usa el lenguaje C++ y se ejecuta un solo programa encargado de captar la imagen de la cámara, filtrar y procesar para encontrar la pelota, tomar la decisión de la acción a ejecutar y hacer la petición a la Arbotix para que dé la orden a los motores de ejecutar el movimiento. Para captar la imagen de la cámara se ha utilizado la librería RasPiCam CV. Para filtrar y procesar la imagen se ha usado las librerías de OpenCV. La Arbotix, además de controlar los motores, se encarga de monitorizar que el robot se encuentre balanceado, para ello usa el sensor Gyro de Robotis. Si detecta un desbalance de un cierto tamaño puede saber si se ha caído y levantarse.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper suggests ways for educators and designers to understand and merge priorities in order to inform the development of mobile learning (m-learning) applications that maximise user experiences and hence learning opportunities. It outlines a User Experience Design (UXD) theory and development process that requires designers to conduct a thorough initial contextual inquiry into a particular domain in order to set project priorities and development guidelines. A matrix that identifies the key contextual considerations namely the social, cultural, spatial, technical and temporal constructs of any domain is presented as a vital tool for achieving successful UXD. The frame of reference provided by this matrix ensures that decisions made throughout the design process are attributable to a desired user experience. To illustrate how the proposed UXD theory and development process supports the creation of effective m-learning applications, this paper documents the development process of MILK (Mobile Informal Learning Kit). MILK is a support tool that allows teachers and students to develop event paths that consist of a series SMS question and answer messages that lead players through a series of checkpoints between point A and point B. These event paths can be designed to suit desired learning scenarios and can be used to explore a particular place or subject. They can also be designed to facilitate formal or informal learning experiences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigates the problem of robot navigation using only landmark bearings. The proposed system allows a robot to move to a ground target location specified by the sensor values observed at this ground target posi- tion. The control actions are computed based on the difference between the current landmark bearings and the target landmark bearings. No Cartesian coordinates with respect to the ground are computed by the control system. The robot navigates using solely information from the bearing sensor space. Most existing robot navigation systems require a ground frame (2D Cartesian coordinate system) in order to navigate from a ground point A to a ground point B. The commonly used sensors such as laser range scanner, sonar, infrared, and vision do not directly provide the 2D ground coordi- nates of the robot. The existing systems use the sensor measurements to localise the robot with respect to a map, a set of 2D coordinates of the objects of interest. It is more natural to navigate between the points in the sensor space corresponding to A and B without requiring the Cartesian map and the localisation process. Research on animals has revealed how insects are able to exploit very limited computational and memory resources to successfully navigate to a desired destination without computing Cartesian positions. For example, a honeybee balances the left and right optical flows to navigate in a nar- row corridor. Unlike many other ants, Cataglyphis bicolor does not secrete pheromone trails in order to find its way home but instead uses the sun as a compass to keep track of its home direction vector. The home vector can be inaccurate, so the ant also uses landmark recognition. More precisely, it takes snapshots and compass headings of some landmarks. To return home, the ant tries to line up the landmarks exactly as they were before it started wandering. This thesis introduces a navigation method based on reflex actions in sensor space. The sensor vector is made of the bearings of some landmarks, and the reflex action is a gradient descent with respect to the distance in sensor space between the current sensor vector and the target sensor vec- tor. Our theoretical analysis shows that except for some fully characterized pathological cases, any point is reachable from any other point by reflex action in the bearing sensor space provided the environment contains three landmarks and is free of obstacles. The trajectories of a robot using reflex navigation, like other image- based visual control strategies, do not correspond necessarily to the shortest paths on the ground, because the sensor error is minimized, not the moving distance on the ground. However, we show that the use of a sequence of waypoints in sensor space can address this problem. In order to identify relevant waypoints, we train a Self Organising Map (SOM) from a set of observations uniformly distributed with respect to the ground. This SOM provides a sense of location to the robot, and allows a form of path planning in sensor space. The navigation proposed system is analysed theoretically, and evaluated both in simulation and with experiments on a real robot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This kit, designed for youth and family services and practitioners, provides an outline of action research, suggested strategies and tools for undertaking action research, as well as discussion of various challenges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mobile robots are widely used in many industrial fields. Research on path planning for mobile robots is one of the most important aspects in mobile robots research. Path planning for a mobile robot is to find a collision-free route, through the robot’s environment with obstacles, from a specified start location to a desired goal destination while satisfying certain optimization criteria. Most of the existing path planning methods, such as the visibility graph, the cell decomposition, and the potential field are designed with the focus on static environments, in which there are only stationary obstacles. However, in practical systems such as Marine Science Research, Robots in Mining Industry, and RoboCup games, robots usually face dynamic environments, in which both moving and stationary obstacles exist. Because of the complexity of the dynamic environments, research on path planning in the environments with dynamic obstacles is limited. Limited numbers of papers have been published in this area in comparison with hundreds of reports on path planning in stationary environments in the open literature. Recently, a genetic algorithm based approach has been introduced to plan the optimal path for a mobile robot in a dynamic environment with moving obstacles. However, with the increase of the number of the obstacles in the environment, and the changes of the moving speed and direction of the robot and obstacles, the size of the problem to be solved increases sharply. Consequently, the performance of the genetic algorithm based approach deteriorates significantly. This motivates the research of this work. This research develops and implements a simulated annealing algorithm based approach to find the optimal path for a mobile robot in a dynamic environment with moving obstacles. The simulated annealing algorithm is an optimization algorithm similar to the genetic algorithm in principle. However, our investigation and simulations have indicated that the simulated annealing algorithm based approach is simpler and easier to implement. Its performance is also shown to be superior to that of the genetic algorithm based approach in both online and offline processing times as well as in obtaining the optimal solution for path planning of the robot in the dynamic environment. The first step of many path planning methods is to search an initial feasible path for the robot. A commonly used method for searching the initial path is to randomly pick up some vertices of the obstacles in the search space. This is time consuming in both static and dynamic path planning, and has an important impact on the efficiency of the dynamic path planning. This research proposes a heuristic method to search the feasible initial path efficiently. Then, the heuristic method is incorporated into the proposed simulated annealing algorithm based approach for dynamic robot path planning. Simulation experiments have shown that with the incorporation of the heuristic method, the developed simulated annealing algorithm based approach requires much shorter processing time to get the optimal solutions in the dynamic path planning problem. Furthermore, the quality of the solution, as characterized by the length of the planned path, is also improved with the incorporated heuristic method in the simulated annealing based approach for both online and offline path planning.