919 resultados para road pavement marking
Resumo:
Federal Highway Administration, Implementation Division, Washington, D.C.
Resumo:
Ohio Department of Transportation, Columbus
Resumo:
Mode of access: Internet.
Resumo:
One of the leading complaints from drivers is the inability to see pavement markings under wet night conditions. This issue is a major source of dissatisfaction in state department of transportation (DOT) customer satisfaction surveys. Driving under wet night conditions is stressful and fatiguing for all drivers, but particularly so for the more vulnerable young and older driver age groups. This project focused on the development of a two-year, long-line test deck to allow for the evaluation and demonstration of a variety of wet-reflective pavement marking materials and treatments under wet night conditions. Having the opportunity to document the performance of these various products and treatments will assist the Iowa DOT and local agencies in determining when and where the use of these products might be most effective. Performance parameters included durability, presence, retroreflectivity, and wet night visibility. The test sections were located within Story County so that Iowa DOT management and staff, as well as local agencies, could drive these areas and provide input on the products and treatments.
Resumo:
The purpose of this research project is to determine if (1) epoxy lane markings will last an entire winter season without replacement, (2) epoxy lane marking is an economical alternative to standard paint on high-traffic multi-lane roadways where lane changing is frequent, and (3) there are worthwhile benefits derived from thorough cleaning of the pavement surface before painting. The success of epoxy lane marking depends on the success of the equipment with which it is mixed and applied. The epoxy lane marking material, if properly mixed and placed on a clean surface, has the durability required to withstand a high traffic volume and frequent lane changes for at least one year.
Resumo:
Pavement marking materials other than conventional paint must be evaluated as environmental standards become more restrictive. The new EPA classification for solvents states that all oil paints are photochemically reactive and, therefore, contribute to smog. This will eventually result in the elimination of organic solvents from all paints, which may occur in Iowa by 1985. The Special Investigations Section of the Office of Materials field reviewed all urban and rural applications of pavement marking materials in the spring of 1979. The field review consisted of a visual estimation of percent marking missing, percent satisfactory, and percent non-satisfactory; reflective readings by ERMA; and notation of special conditions which may have impacted performance. ERMA was not effective in evaluating the reflective quality of pavement marking materials. No pavement marking materials evaluated have been successful enough to date to totally replace conventional painting methods.
Resumo:
The proposed Federal Highway Administration (FHWA) amendments to the Manual of Uniform Traffic Control Devices (MUTCD) will change the way local agencies manage their pavement markings and places a focus on pavement marking quality and management methods. This research effort demonstrates how a pavement marking maintenance method could be developed and used at the local agency level. The report addresses the common problems faced by agencies in achieving good pavement marking quality and provides recommendations specific towards these problems in terms of assessing pavement marking needs, selecting pavement marking materials, contracting out pavement marking services, measuring and monitoring performance, and in developing management tools to visualize pavement marking needs in a GIS format. The research includes five case studies, three counties and two cities, where retroreflectivity was measured over a spring and fall season and then mapped to evaluate pavement marking performance and needs. The research also includes over 35 field demonstrations (installation and monitoring) of both longitudinal and transverse durable markings in a variety of local agency settings all within an intense snow plow state.
Resumo:
With an annual pavement marking program of approximately $2 million and another $750 thousand invested in maintenance of durable markings each year, the Iowa DOT is seeking every opportunity to provide all-year markings staying in acceptable condition under all weather conditions. The goal of this study is to analyze existing pavement marking practices and to develop a prototype Pavement Marking Management System (PMMS). This report documents the first two phases of a three-phase research project. Phase I includes an overview of the Iowa DOT’s existing practices and a literature review regarding pavement marking practices in other states. Based on this information, a work plan was developed for Phases II and III of this study. Phase II organized the key components necessary to develop a prototype PMMS for the Iowa DOT. The two primary components are (1) performance/life cycle curves for pavement marking products, and (2) an application matrix tailored to the pavement marking products and roadway and environmental conditions faced by the Iowa DOT. Both components will continue to be refined and tailored to Iowa materials and conditions as more performance data becomes available.
Resumo:
Previous research on pavement markings from a safety perspective tackled various issues such as pavement marking retroreflectivity variability, relationship between pavement marking retroreflectivity and driver visibility, or pavement marking improvements and safety. A recent research interest in this area has been to find a correlation between retroreflectivity and crashes, but a significant statistical relationship has not yet been found. This study investigates such a possible statistical relationship by analyzing five years of pavement marking retroreflectivity data collected by the Iowa Department of Transportation (DOT) on all state primary roads and corresponding crash and traffic data. This study developed a spatial-temporal database using measured retroreflectivity data to account for the deterioration of pavement markings over time along with statewide crash data to attempt to quantify a relationship between crash occurrence probability and pavement marking retroreflectivity. First, logistic regression analyses were done for the whole data set to find a statistical relationship between crash occurrence probability and identified variables, which are road type, line type, retroreflectivity, and traffic (vehicle miles traveled). The analysis looked into subsets of the data set such as road type, retroreflectivity measurement source, high crash routes, retroreflectivity range, and line types. Retroreflectivity was found to have a significant effect in crash occurrence probability for four data subsets—interstate, white edge line, yellow edge line, and yellow center line data. For white edge line and yellow center line data, crash occurrence probability was found to increase by decreasing values of retroreflectivity.
Resumo:
Low noise surfaces have been increasingly considered as a viable and cost-effective alternative to acoustical barriers. However, road planners and administrators frequently lack information on the correlation between the type of road surface and the resulting noise emission profile. To address this problem, a method to identify and classify different types of road pavements was developed, whereby near field road noise is analyzed using statistical learning methods. The vehicle rolling sound signal near the tires and close to the road surface was acquired by two microphones in a special arrangement which implements the Close-Proximity method. A set of features, characterizing the properties of the road pavement, was extracted from the corresponding sound profiles. A feature selection method was used to automatically select those that are most relevant in predicting the type of pavement, while reducing the computational cost. A set of different types of road pavement segments were tested and the performance of the classifier was evaluated. Results of pavement classification performed during a road journey are presented on a map, together with geographical data. This procedure leads to a considerable improvement in the quality of road pavement noise data, thereby increasing the accuracy of road traffic noise prediction models.
Resumo:
This study explores the statistical relationship between crash occurrence probability and longitudinal pavement marking retroreflectivity. Problem Statement Previous research on pavement markings, from a safety perspective, tackled various issues, such as pavement marking retroreflectivity variability, relationship between pavement marking retroreflectivity and driver visibility, and pavement marking improvements and safety. A recent research interest in this area is to find a correlation between retroreflectivity and crashes, as a significant statistical relationship is undefined to date.
Resumo:
Pavement marking technology is a continually evolving subject. There are numerous types of materials used in the field today, including (but not limited to) paint, epoxy, tape, and thermoplastic. Each material has its own set of unique characteristics related to durability, retro reflectivity, installation cost, and life-cycle cost. The Iowa Highway Research Board was interested in investigating the possibility of developing an ongoing program to evaluate the various products used in pavement marking. This potential program would maintain a database of performance and cost information to assist state and local agencies in determining which materials and placement methods are most appropriate for their use. The Center for Transportation Research and Education at Iowa State University has completed Phase I of this research: to identify the current practice and experiences from around the United States to recommend a further course of action for the State of Iowa. There has been a significant amount of research completed in the last several years. Research from Michigan, Pennsylvania, South Dakota, Ohio, and Alaska all had some common findings: white markings are more retro reflective than yellow markings; paint is by-and-large the least expensive material; paint tends to degrade faster than other materials; thermoplastic and tapes had higher retro reflective characteristics. Perhaps the most significant program going on in the area of pavement markings is the National Transportation Product Evaluation Program (NTPEP). This is an ongoing research program jointly conducted by the American Association of State Highway and Transportation Officials and its member states. Field and lab tests on numerous types of pavement marking materials are being conducted at sites representing four climatological areas. These results are published periodically for use by any jurisdiction interested in pavement marking materials performance.At this time, it is recommended that the State of Iowa not embark on a test deck evaluation program. Instead, close attention should be paid to the ongoing evaluations of the NTPEP program. Materials that fare well on the NTPEP test de cks should be considered for further field studies in Iowa.
Resumo:
Pavement marking technology is a continually evolving subject. There are numerous types of materials used in the field today, including (but not limited to) paint, epoxy, tape, and thermoplastic. Each material has its own set of unique characteristics related to durability, retroreflectivity, installation cost, and life-cycle cost. The Iowa Highway Research Board was interested in investigating the possibility of developing an ongoing program to evaluate the various products used in pavement marking. This potential program would maintain a database of performance and cost information to assist state and local agencies in determining which materials and placement methods are most appropriate for their use. The Center for Transportation Research and Education at Iowa State University has completed Phase I of this research: to identify the current practice and experiences from around the United States to recommend a further course of action for the State of Iowa. There has been a significant amount of research completed in the last several years. Research from Michigan, Pennsylvania, South Dakota, Ohio, and Alaska all had some common findings: white markings are more retroreflective than yellow markings; paint is by-and-large the least expensive material; paint tends to degrade faster than other materials; thermoplastic and tapes had higher retroreflective characteristics. Perhaps the most significant program going on in the area of pavement markings is the National Transportation Product Evaluation Program (NTPEP). This is an ongoing research program jointly conducted by the American Association of State Highway and Transportation Officials and its member states. Field and lab tests on numerous types of pavement marking materials are being conducted at sites representing four climatological areas. These results are published periodically for use by any jurisdiction interested in pavement marking materials performance. At this time, it is recommended that the State of Iowa not embark on a test deck evaluation program. Instead, close attention should be paid to the ongoing evaluations of the NTPEP program. Materials that fare well on the NTPEP test de cks should be considered for further field studies in Iowa.
Resumo:
Single-vehicle run-off-road crashes are the most common crash type on rural two-lane Iowa roads. Rumble strips have proven effective in mitigating these crashes, but the strips are commonly installed in paved shoulders on higher-volume roads that are owned by the State of Iowa. Lower-volume paved rural roads owned by local agencies do not commonly feature paved shoulders but frequently experience run-off-road crashes. This project involved installing rumble stripes, which are a combination of conventional rumble strips with a painted edge line placed on the surface of the milled area, along the edge of the travel lanes, but at a narrow width to avoid possible intrusion into the normal vehicle travel paths. The research described in this report was part of a project funded by the Federal Highway Administration, Iowa Highway Research Board, and Iowa Department of Transportation to evaluate the effectiveness of edge-line rumble strips in Iowa. The project evaluated the effectiveness of rumble stripes in reducing run-off-road crashes and in improving the longevity and wet-weather visibility of edge-line markings. This project consisted of two phases. The first phase was to select pilot study locations, select a set of test sites, install rumble stripes, summarize lessons learned during installation, and provide a preliminary assessment of the rumble stripes’ performance. The purpose of this report was to document results from Phase II. A before and after crash analysis was conducted to assess whether use of the treatment had resulted in fewer crashes. However, due to low sample size, results of the analysis were inconclusive. Lateral position was also evaluated before and after installation of the treatment to determine whether vehicles engaged in better lane keeping. Pavement marking wear was also assessed.
Resumo:
Transportation agencies in Iowa are responsible for a significant public investment with the installation and maintenance of traffic control devices and pavement markings. Included in this investment are thousands of signs and other inventory items, equipment, facilities, and staff. The proper application of traffic control devices and pavement markings is critical to public safety on streets and highways, and local governments have a prescribed responsibility under the Code of Iowa to properly manage these assets. This research report addresses current traffic control and pavement marking application, maintenance, and management in Iowa.