955 resultados para retina rod


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the mammalian retina, extensive processing of spatiotemporal and chromatic information occurs. One key principle in signal transfer through the retina is parallel processing. Two of these parallel pathways are the ON- and OFF-channels transmitting light and dark signals. This dual system is created in the outer plexiform layer, the first relay station in retinal signal transfer. Photoreceptors release glutamate onto ON- and OFF-type bipolar cells, which are functionally distinguished by their postsynaptic expression of different types of glutamate receptors, namely ionotropic and metabotropic glutamate receptors. In the current concept, rod photoreceptors connect only to rod bipolar cells (ON-type) and cone photoreceptors connect only to cone bipolar cells (ON- and OFF-type). We have studied the distribution of (RS)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunits at the synapses in the outer plexiform layer of the rodent retina by immunoelectron microscopy and serial section reconstruction. We report a non-classical synaptic contact and an alternative pathway for rod signals in the retina. Rod photoreceptors made synaptic contact with putative OFF-cone bipolar cells that expressed the AMPA glutamate receptor subunits GluR1 and GluR2 on their dendrites. Thus, in the retina of mouse and rat, an alternative pathway for rod signals exists, where rod photoreceptors bypass the rod bipolar cell and directly excite OFF-cone bipolar cells through an ionotropic sign-conserving AMPA glutamate receptor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studies of the effect of ethanol on human visual evoked potentials are rare and usually involve chronic alcoholic patients. The effect of acute ethanol ingestion has seldom been investigated. We have studied the effect of acute alcoholic poisoning on pattern-reversal visual evoked potentials (PR-VEP) and flash light visual evoked potentials (F-VEP) in 20 normal volunteers. We observed different effects with ethanol: statistically significant prolonged latencies of F-VEP after ingestion, and no significant differences in the latencies of the PR-VEP components. We hypothesize a selective ethanol effect on the afferent transmission of rods, mainly dependent on GABA and glutamatergic neurotransmission, influencing F-VEP latencies, and no effect on cone afferent transmission, as alcohol doesn't influence PR-VEP latencies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Distemper leukoencephalitis is a disease caused by the canine distemper virus (CDV) infection. It is a demyelinating disease affecting mainly the white matter of the cerebellum and areas adjacent to the fourth ventricle; the enzymes of the matrix metalloproteinases (MMPs) group, especially MMP-2 and MMP-9 have a key role in the myelin basic protein fragmentation and in demyelination, as well as in leukocyte traffic into the nervous milieu. To evaluate the involvement of MMPs during subacute distemper leukoencephalitis, we measured the levels of MMP-2 and MMP-9 by zymography in the cerebrospinal fluid (CSF) and in the cerebellum of 14 dogs naturally infected with CDV and 10 uninfected dogs. The infected dogs presented high levels of pro-MMP-2 in the CSF and elevated levels of pro-MMP-2 and pro-MMP-9 in the cerebellar tissue. Active MMP-2 was detected in the CSF of some infected dogs. As active MMP-2 and MMP-9 are required for cellular migration across the blood-brain barrier and any interference between MMPs and their inhibitors may result in an amplification of demyelination, this study gives additional support to the involvement of MMPs during subacute distemper leukoencephalitis and suggests that MMP-2 and MMP-9 may take part in the brain inflammatory changes of this disease. © 2013 Elsevier B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Small bistratified cells (SBCs) in the primate retina carry a major blue-yellow opponent signal to the brain. We found that SBCs also carry signals from rod photoreceptors, with the same sign as S cone input. SBCs exhibited robust responses under low scotopic conditions. Physiological and anatomical experiments indicated that this rod input arose from the AII amacrine cell-mediated rod pathway. Rod and cone signals were both present in SBCs at mesopic light levels. These findings have three implications. First, more retinal circuits may multiplex rod and cone signals than were previously thought to, efficiently exploiting the limited number of optic nerve fibers. Second, signals from AII amacrine cells may diverge to most or all of the approximately 20 retinal ganglion cell types in the peripheral primate retina. Third, rod input to SBCs may be the substrate for behavioral biases toward perception of blue at mesopic light levels.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electrical coupling provided by connexins (Cx) in gap junctions (GJ) plays important roles in both the developing and the mature retina. In mammalian nocturnal species, Cx36 is an essential component in the rod pathway, the retinal circuit specialized for night, scotopic vision. Here, we report the expression of Cx36 in a species (Gallus gallus) that phylogenetic development endows with an essentially rodless retina. Cx36 gene is very highly expressed in comparison with other Cxs previously described in the adult retina, such as Cx43, Cx45, and Cx50. Moreover, real-time PCR, Western blot, and immunofluorescence all revealed that Cx36 expression massively increased over time during development. We thoroughly examined Cx36 in the inner and outer plexiform layers, where this protein was particularly abundant. Cx36 was observed mainly in the off sublamina of the inner plexiform layer rather than in the on sublamina previously described in the mammalian retina. In addition, Cx36 colocalized with specific cell markers, revealing the expression of this protein in distinct amacrine cells. To investigate further the involvement of Cx36 in visual processing, we examined its functional regulation in retinas from dark-adapted animals. Light deprivation markedly up-regulates Cx36 gene expression in the retina, resulting in an increased accumulation of the protein within and between cone synaptic terminals. In summary, the developmental regulation of Cx36 expression results in particular circuitry-related roles in the chick retina. Moreover, this study demonstrated that Cx36 onto- and phylogenesis in the vertebrate retina simultaneously exhibit similarities and particularities. J. Comp. Neurol. 512:651-663, 2009. (C) 2008 Wiley-Liss, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rod bipolar cells in Cebus apella monkey retina were identified by an antibody against the alpha isoform of protein kinase C (PKC alpha). which has been shown to selectively identify rod bipolars in two other primates and various mammals. Vertical sections were used to confirm the identity of these cells by their characteristic morphology of dendrites and axons. Their topographic distribution was assessed in horizontal sections; counts taken along the dorsal, ventral, nasal, and temporal quadrants. The density of rod bipolar cells increased from 500 to 2900 cells/mm(2) at 1 mm from the fovea to reach a peak of 10,000-12,000 cellss/mm(2) at 4 mm, approximately 5 deg of eccentricity, and then gradually decreased toward retinal periphery to values of 5000 cells/mm(2) or less. Rod to rod bipolar density ratio remained between 10 and 20 across most of the retinal extension. The number of rod bipolar cells per retina was 6,360,000 +/- 387,433 (mean +/- S.D., n = 6). The anti-PKC alpha antibody has shown to be a good marker of rod bipolar cells of Cebus, and the cell distribution is similar to that described for other primates. In spite of the difference in the central retina, the density variation of rod bipolar cells in the Cebus and Macaca as well as the convergence from rod to rod bipolar cells are Generally similar, suggesting that both retinae stabilize similar sensitivity (as measured by rod density) and convergence.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Small bistratified cells (SBCs) in the primate retina carry a major blue-yellow opponent signal to the brain. We found that SBCs also carry signals from rod photoreceptors, with the same sign as S cone input. SBCs exhibited robust responses under low scotopic conditions. Physiological and anatomical experiments indicated that this rod input arose from the AII amacrine cell-mediated rod pathway. Rod and cone signals were both present in SBCs at mesopic light levels. These findings have three implications. First, more retinal circuits may multiplex rod and cone signals than were previously thought to, efficiently exploiting the limited number of optic nerve fibers. Second, signals from AII amacrine cells may diverge to most or all of the approximately 20 retinal ganglion cell types in the peripheral primate retina. Third, rod input to SBCs may be the substrate for behavioral biases toward perception of blue at mesopic light levels.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The retina is a specialized neuronal structure that transforms the optical image into electrical signals which are transmitted to the brain via the optic nerve. As part of the strategy to cover a stimulus range as broad as 10 log units, from dim starlight to bright sunlight, retinal circuits are broadly divided into rod and cone pathways, responsible for dark and light-adapted vision, respectively. ^ In this dissertation, confocal microscopy and immunocytochemical methods were combined to study the synaptic connectivity of the rod pathway from the level of individual synapses to whole populations of neurons. The study was focused on synaptic interactions at the rod bipolar terminal. The purpose is to understand the synaptic structure of the dyad synapse made by rod bipolar terminals, including the synaptic components and connections, and their physiological functions in the rod pathway. In addition, some additional components and connections of the rod pathway were also studied in these experiments. The major results can be summarized as following: At the dyad synapse of rod bipolar terminals, three postsynaptic components—processes of All amacrine cells and the varicosities of S1 or S2 amacrine cells express different glutamate receptor subunits, which may underlie the functional diversity of these postsynaptic neurons. A reciprocal feedback system is formed by rod bipolar terminals and S1/S2 amacrine cells. Analysis showed these two wide-field GABA amacrine cells have stereotyped synaptic connections with the appropriate morphology and distribution to perform specific functions. In addition, S1 and S2 cells have different coupling patterns and, in general, there is no coupling between the two types. Besides the classic rod pathway though rod bipolar cells and All amacrine cells, the finding of direct connections between certain types of OFF cone bipolar cells and rods indicates the presence of an alternative rod pathway in the rabbit retina. ^ In summary, this dissertation presents a detailed view of the connection and receptors at rod bipolar terminals. Based on the morphology, distribution and coupling, different functional roles were identified for S1 and S2 amacrine cells. Finally, an alternative to the classic rod pathway was found in the rabbit retina. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

trkB is the high-affinity receptor for brain-derived neurotrophic factor (BDNF), a trophic molecule with demonstrated effects on the survival and differentiation of a wide variety of neuronal populations. In the mammalian retina, trkB is localized to both ganglion cells and numerous cells in the inner nuclear layer. Much information on the role of BDNF in neuronal development has been derived from the study of trkB- and BDNF-deficient mutant mice. This includes an attenuation of the numbers of cortical neurons immunopositive for the calcium-binding proteins, parvalbumin, and calbindin. Unfortunately, these mutant animals typically fail to survive for > 24-48 hr after birth. Since most retinal neuronal differentiation occurs postnatally, we have devised an alternative scheme to suppress the expression of trkB in the retina to examine the role of BDNF on the postnatal development of neurons of the inner retina. Neonatal rats were treated with intraocular injection of an antisense oligonucleotide (1-2 microliters of 10-100 microM solution) targeted to the trkB mRNA. Immunohistochemistry with a polyclonal antibody to trkB showed that the expression of trkB in retinal neurons was suppressed 48-72 hr following a single injection. Northern blot analysis demonstrated that antisense treatment had no effect on the level of trkB mRNA, even after multiple injections. This suggests an effect of trkB antisense treatment on protein translation, but not on RNA transcription. No alterations were observed in the thickness of retinal cellular or plexiform layers, suggesting that BDNF is not the sole survival factor for these neurons. There were, however, alterations in the patterns of immunostaining for parvalbumin, a marker for the narrow-field, bistratified AII amacrine cell-a central element of the rod (scotopic) pathway. This was evidenced by a decrease in both the number of immunostained somata (> 50%) and in the intensity of immunolabeling. However, the immunostaining pattern of calbindin was not affected. These studies suggest that the ligands for trkB have specific effects on the neurochemical phenotypic expression of inner retinal neurons and in the development of a well-defined retinal circuit.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rod signals in the mammalian retina are thought to reach ganglion cells over the circuit rod-->rod depolarizing bipolar cell-->AII amacrine cell-->cone bipolar cells-->ganglion cells. A possible alternative pathway involves gap junctions linking the rods and cones, the circuit being rod-->cone-->cone bipolar cells-->ganglion cells. It is not clear whether this second pathway indeed relays rod signals to ganglion cells. We studied signal flow in the isolated rabbit retina with a multielectrode array, which allows the activity of many identified ganglion cells to be observed simultaneously while the preparation is stimulated with light and/or exposed to drugs. When transmission between rods and rod depolarizing bipolar cells was blocked by the glutamate agonist 2-amino-4-phosphonobutyric acid (APB), rod input to all On-center and briskly responding Off-center ganglion cells was dramatically reduced as expected. Off responses persisted, however, in Off-center sluggish and On-Off direction-selective ganglion cells. Presumably these responses were generated by the alternative pathway involving rod-cone junctions. This APB-resistant pathway may carry the major rod input to Off-center sluggish and On-Off direction-selective ganglion cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE. This study was conducted to evaluate whether regions of the retinal neuropile become hypoxic during periods of high oxygen consumption and whether depletion of the outer retina reduces hypoxia and related changes in gene expression.

METHODS. Retinas from rhodopsin knockout (Rho(-/-)) mice were evaluated along with those of wild-type (WT) control animals. Retinas were also examined at the end of 12-hour dark or light periods, and a separate group was treated with L-cis-diltiazem at the beginning of a 12-hour dark period. Hypoxia was assessed by deposition of hypoxyprobe (HP) and HP-protein adducts were localized by immunohistochemistry and quantified using ELISA. Also, hypoxia-regulated gene expression and transcriptional activity were assessed alongside vascular density.

RESULTS. Hypoxia was observed in the inner nuclear and ganglion cell layers in WT retina and was significantly reduced in Rho (-/-) mice (P < 0.05). Retinal hypoxia was significantly increased during dark adaptation in WT mice (P < 0.05), whereas no change was observed in Rho(-/-) or with L-cis-diltiazem-treated WT mice. Hypoxia-inducible factor (HIF)-1 alpha DNA-binding and VEGF mRNA expression in Rho(-/-) retina was significantly reduced in unison with outer retinal depletion (P < 0.05). Retina from the Rho(-/-) mice displayed an extensive intraretinal vascular network after 6 months, although there was evidence that capillary density was depleted in comparison with that in WT retinas.

CONCLUSIONS. Relative hypoxia occurs in the inner retina especially during dark adaptation. Photoreceptor loss reduces retinal oxygen usage and hypoxia which corresponds with attenuation of the retinal microvasculature. These studies suggest that in normal physiological conditions and diurnal cycles the adult retina exists in a state of borderline hypoxia, making this tissue particularly susceptible to even subtle reductions in perfusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study Lister rats were given doses of X-rays ranging from 200-2,000 Rads to the retina of one eye, sacrificed at various time intervals between one hour and one month later and the irradiated eye processed for electron microscopy. The rod photoreceptor cells were by far the most radiosensitive cells in the retina, their outer segments showing distinctive membrane damage at one hour after 200 Rads of X-rays. Photoreceptor cell death was not seen at doses less than 1,000 Rads in the time period of the experiment. The retinal pigment epithelial (RPE) cells showed damage in the form of mitochondrial swelling but only in doses over 500 Rads. Retinal pigment epithelial cell loss did not occur under 2,000 Rads. The inner retinal neurones, glial elements and the retinal vasculature did not show any ill effects in the time period of this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synaptic modulation by activity-dependent changes constitutes a cellular mechanism for neuronal plasticity. However, it is not clear how the complete lack of neuronal signaling specifically affects elements involved in the communication between neurons. In the retina, it is now well established that both chemical and electrical synapses are essential to mediate the transmission of visual signaling triggered by the photoreceptors. In this study, we compared the expression of synaptic proteins in the retinas of wild-type (WT) vs. rd/rd mice, an animal model that displays inherited and specific ablation of photoreceptors caused by a mutation in the gene encoding the beta-subunit of rod cGMP-phosphodiesterase (Pde6b(rd1)). We specifically examined the expression of connexins (Cx), the proteins that form the gap junction channels of electrical synapses, in addition to synaptophysin and synapsin 1, which are involved in the release of neurotransmitters at chemical synapses. Our results revealed that Cx36 gene expression levels are lower in the retinas of rd/rd when compared with WT. Confocal analysis indicated that Cx36 immunolabeling almost disappeared in the outer plexiform layer without significant changes in protein distribution within the inner plexiform layer of rd/rd retinas. Likewise, synaptophysin expression remarkably decreased in the outer plexiform layer of rd/rd retinas, and this down-regulation was also associated with diminished transcript levels. Furthermore, we observed down-regulation of Cx57 gene expression in rd/rd retinas when compared with WT and also changes in protein distribution. Interestingly, Cx45 and synapsin I expression in rd/rd retinas showed no noticeable changes when compared with WT. Taken together, our results revealed that the loss of photoreceptors leads to decreased expression of some synaptic proteins. More importantly, this study provides evidence that neuronal activity regulates, but is not essential to maintain, the expression of synaptic elements. (c) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O metilmercúrio (MeHg) é a forma mais tóxica do mercúrio. A exposição ao MeHg gera estresse oxidativo, podendo afetar a retina, pois esta possui alta vulnerabilidade em função do seu elevado conteúdo de ácidos graxos poliinsaturados e consumo de oxigênio. Nesse contexto, a administração de antioxidantes exógenos obtidos pela dieta, como os presentes na Euterpe oleracea (açaí), poderia ser uma forma de prevenir esse desequilíbrio e suas consequências. Portanto, o objetivo deste trabalho foi avaliar o possível efeito protetor da Euterpe oleracea nas alterações eletrofisiológicas causadas pelo MeHg na retina. Para tal, foi realizada gavagem com MeHgCl (5 mg/Kg) ou solução salina (NaCl 0,9%) durante 7 dias e pré-tratamento com ração enriquecida com polpa de açaí (10%) por 28 dias. Foram utilizados ratos Wistar divididos em 4 grupos: Grupo MeHg (recebeu ração padrão e MeHgCl); MeHg+Açaí (ração enriquecida com açaí e MeHgCl); Açaí (ração enriquecida com açaí e NaCl); Veículo (ração padrão e NaCl). Um dia após a última gavagem os animais foram submetidos ao eletrorretinograma de campo total (ffERG) para obtenção da resposta escotópica (de bastonetes, mista 1 e mista 2) e fotópica (de cones e de flicker em 12; 18; 24 e 30Hz). No dia seguinte ao ffERG foi aplicado o teste campo aberto para avaliar a atividade locomotora dos animais. Posteriormente, foi feita medição de peroxidação lipídica no tecido retiniano pelo método TBARS. A análise estatística foi feita pelo teste ANOVA de uma via com pós-teste de Tukey, considerando significativo p<0,05. Os resultados do campo aberto e da massa corporal não apresentaram diferença entre os grupos. O MeHg reduziu a amplitude das seguintes respostas: onda-b da resposta de bastonetes (Veículo: 114,6±23,6 μV e MeHg: 41,2±9,6 μV); onda-a (Veículo: 8,4±1,4 μV e MeHg: 3,4±0,3 μV) e onda-b (Veículo: 176,7±17,8 μV e MeHg: 69,5±12,0 μV) na resposta mista 1; onda-a (Veículo: 103,1 ±23,3 μV e MeHg: 40,2±9,6 μV) e onda-b (Veículo: 281±,38,3 μV e MeHg: 138,6±14 μV) da resposta mista 2; onda-a (Veículo: 27,2 ±3,6 μV e MeHg: 7,5±1,8 μV) e onda-b (Veículo: 139,3±16,1 μV e MeHg: 54,4±10 μV) da resposta de cones; onda-b nas frequências 12 Hz (Veículo: 67,7±10μV e MeHg: 28,6±6,9 μV), 18 Hz (Veículo: 31,3±3,4 μV e MeHg: 14,2± 2,3 μV) e 24 Hz (Veículo: 21,0±1,8μV e MeHg: 11,0± 1,1μV) e 30 Hz (Veículo: 10,9±0,6μV e MeHg: 6,0± 1,1μV). O tempo implícito das ondas não foi alterado em nem uma das respostas. O pré-tratamento com Euterpe oleracea evitou a redução de amplitude de ambas as ondas nas respostas mista 1 (onda-a: 8,3±0,6 μV; onda b: 144,1±7,1 μV) e mista 2 (onda-a: 106,4±13,6μV; onda b: 275,2±27,6 μV), assim como da onda-b da resposta de cones (104,5±5,9 μV) e fotópica de flicker em 12 Hz (67,2±9,1 μV), 18 Hz (29,5±4,8 μV) e 24 Hz (21,9±2,4 μV). A peroxidação lipídica no tecido retiniano do grupo MeHg (294,9±205,8%) foi maior que a do Veículo (100±25,1%) e o açaí protegeu contra esse dano oxidativo (MeHg+Açaí: 111,2±26,1%). Nossos resultados demonstraram alteração difusa na resposta eletrofisiológica e aumento na peroxidação lipídica da retina induzidos pelo MeHg e proteção exercida pelo açaí nesses dois parâmetros. Assim, a Euterpe oleracea poderia ser utilizada como importante alternativa para amenizar as alterações causadas pelo MeHg na retina.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intraflagellar transport (IFT) is required for the assembly and maintenance of cilia. In this study we analyzed the subcellular localization of IFT proteins in retinal cells by correlative high-resolution immunofluorescence and immunoelectron microscopy. The rod photoreceptor cell was used as a model system to analyze protein distribution in cilia. To date the expression of IFT proteins has been described in the ciliary region without deciphering the precise spatial and temporal subcellular localization of IFT proteins, which was the focus of my work. rnThe establishment of the pre-embedding immunoelectron method was an important first step for the present doctoral thesis. Results of this work reveal the differential localization of IFT20, IFT52, IFT57, IFT88, IFT140 in sub-ciliary compartments and also their presence in non-ciliary compartments of retinal photoreceptor cells. Furthermore, the localization of IFT20, IFT52 and IFT57 in dendritic processes of non-ciliated neurons indicates that IFT protein complexes also operate in non-ciliated cells and may participate in intracellular vesicle trafficking in eukaryotic cells in general.rnIn addition, we have investigated the involvement of IFT proteins in the ciliogenesis of vertebrate photoreceptor cilia. Electron microscopy analyses revealed six morphologically distinct stages. The first stages are characterized by electron dense centriolar satellites and a ciliary vesicle, while the formation of a ciliary shaft and of the light sensitive outer segment disks are features of the later stages. IFT proteins were expressed during all stages of photoreceptor cell development and found to be associated with the ciliary apparatus. In addition to the centriole and basal body IFT proteins are present in the photoreceptor cytoplasm, associated with centriolar satellites, post-Golgi vesicles and with the ciliary vesicle. Therewith the data provide an evidence for the involvement of IFT proteins during ciliogenesis, including the formation of the ciliary vesicle and the elongation of the primary cilium of photoreceptor cells. Moreover, the cytoplasmic localization of IFT proteins in the absence of a ciliary shaft in early stages of ciliogenesis indicates roles of IFT proteins beyond their well-established function for IFT in mature cilia and flagella. rn