864 resultados para retention capability
Resumo:
黄土高原(土娄)土在《中国土壤系统分类(修订方案)》中属土垫旱耕人为土类的相应亚类,其土壤水分状况是诊断表层所属人为表层类堆垫表层(覆盖层)和诊断表下层(黏化层)的重要诊断特征。以土壤持水性能、蒸发性能和水分移动性能为切入点,对(土娄)土覆盖层和黏化层的土壤水文效应进行研究论证,以期对土垫旱耕人为土类及其亚类的诊断层与诊断特征获取更深层的认识。
Resumo:
Tout comme la plupart des pays industrialisés, le Canada, et plus particulièrement, le Québec, est caractérisé par une forte concentration de la population immigrante sur son territoire. Encore aujourd’hui, la région métropolitaine de Montréal accueille la majorité des immigrants internationaux admis dans la province, ce qui sous-entend que le reste de la province n’attire qu’une part négligeable de l’immigration. En 1992, le gouvernement du Québec a mis en place une politique de régionalisation dans le but de mieux répartir la population immigrante sur le territoire. Cette politique visait d’une part, à encourager les immigrants internationaux à s’établir en dehors de Montréal et, d’autre part, à faire partager les bénéfices de l’immigration à toutes les régions. Mais qu’en est-il des résultats et des effets de cette politique? Jusqu’à maintenant, on connaît toujours peu de choses sur le sujet et sur les caractéristiques des immigrants qui décident de s’établir en « région ». L’objectif de cette recherche est donc de faire le bilan quantitatif et qualitatif de l’immigration au Québec afin de vérifier si cette politique a eu des répercussions sur le choix de destination des immigrants internationaux. Le premier chapitre est essentiellement consacré à la recension des écrits au sujet de la régionalisation de l’immigration, notamment en ce qui à trait au phénomène de concentration géographique et des tendances à l’échelle nationale et internationale. Un premier portrait des immigrants établis au Canada et au Québec complètera ce chapitre. Le deuxième chapitre analyse l’évolution des flux migratoires et de la régionalisation au Québec de 1982 à 2006. Le dernier chapitre a pour objectif d’évaluer la capacité de rétention des régions. Cela permettra de dresser le portrait actuel de la population immigrée, c’est-à-dire de connaître la région de destination réelle des immigrants. Les résultats de cette recherche nous permettent de croire que les effets de cette politique tardent à se manifester et que les efforts déployés dans le but d’une répartition mieux équilibrée de l’immigration ont porté fruit davantage à la banlieue de Montréal.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência Florestal - FCA
Resumo:
While the engagement, success and retention of first year students are ongoing issues in higher education, they are currently of considerable and increasing importance as the pressures on teaching and learning from the new standards framework and performance funding intensifies. This Nuts & Bolts presentation introduces the concept of a maturity model and its application to the assessment of the capability of higher education institutions to address student engagement, success and retention. Participants will be provided with (a) a concise description of the concept and features of a maturity model; and (b) the opportunity to explore the potential application of maturity models (i) to the management of student engagement and retention programs and strategies within an institution and (ii) to the improvement of these features by benchmarking across the sector.
Resumo:
This research shows that gross pollutant traps (GPTs) continue to play an important role in preventing visible street waste—gross pollutants—from contaminating the environment. The demand for these GPTs calls for stringent quality control and this research provides a foundation to rigorously examine the devices. A novel and comprehensive testing approach to examine a dry sump GPT was developed. The GPT is designed with internal screens to capture gross pollutants—organic matter and anthropogenic litter. This device has not been previously investigated. Apart from the review of GPTs and gross pollutant data, the testing approach includes four additional aspects to this research, which are: field work and an historical overview of street waste/stormwater pollution, calibration of equipment, hydrodynamic studies and gross pollutant capture/retention investigations. This work is the first comprehensive investigation of its kind and provides valuable practical information for the current research and any future work pertaining to the operations of GPTs and management of street waste in the urban environment. Gross pollutant traps—including patented and registered designs developed by industry—have specific internal configurations and hydrodynamic separation characteristics which demand individual testing and performance assessments. Stormwater devices are usually evaluated by environmental protection agencies (EPAs), professional bodies and water research centres. In the USA, the American Society of Civil Engineers (ASCE) and the Environmental Water Resource Institute (EWRI) are examples of professional and research organisations actively involved in these evaluation/verification programs. These programs largely rely on field evaluations alone that are limited in scope, mainly for cost and logistical reasons. In Australia, evaluation/verification programs of new devices in the stormwater industry are not well established. The current limitations in the evaluation methodologies of GPTs have been addressed in this research by establishing a new testing approach. This approach uses a combination of physical and theoretical models to examine in detail the hydrodynamic and capture/retention characteristics of the GPT. The physical model consisted of a 50% scale model GPT rig with screen blockages varying from 0 to 100%. This rig was placed in a 20 m flume and various inlet and outflow operating conditions were modelled on observations made during the field monitoring of GPTs. Due to infrequent cleaning, the retaining screens inside the GPTs were often observed to be blocked with organic matter. Blocked screens can radically change the hydrodynamic and gross pollutant capture/retention characteristics of a GPT as shown from this research. This research involved the use of equipment, such as acoustic Doppler velocimeters (ADVs) and dye concentration (Komori) probes, which were deployed for the first time in a dry sump GPT. Hence, it was necessary to rigorously evaluate the capability and performance of these devices, particularly in the case of the custom made Komori probes, about which little was known. The evaluation revealed that the Komori probes have a frequency response of up to 100 Hz —which is dependent upon fluid velocities—and this was adequate to measure the relevant fluctuations of dye introduced into the GPT flow domain. The outcome of this evaluation resulted in establishing methodologies for the hydrodynamic measurements and gross pollutant capture/retention experiments. The hydrodynamic measurements consisted of point-based acoustic Doppler velocimeter (ADV) measurements, flow field particle image velocimetry (PIV) capture, head loss experiments and computational fluid dynamics (CFD) simulation. The gross pollutant capture/retention experiments included the use of anthropogenic litter components, tracer dye and custom modified artificial gross pollutants. Anthropogenic litter was limited to tin cans, bottle caps and plastic bags, while the artificial pollutants consisted of 40 mm spheres with a range of four buoyancies. The hydrodynamic results led to the definition of global and local flow features. The gross pollutant capture/retention results showed that when the internal retaining screens are fully blocked, the capture/retention performance of the GPT rapidly deteriorates. The overall results showed that the GPT will operate efficiently until at least 70% of the screens are blocked, particularly at high flow rates. This important finding indicates that cleaning operations could be more effectively planned when the GPT capture/retention performance deteriorates. At lower flow rates, the capture/retention performance trends were reversed. There is little difference in the poor capture/retention performance between a fully blocked GPT and a partially filled or empty GPT with 100% screen blockages. The results also revealed that the GPT is designed with an efficient high flow bypass system to avoid upstream blockages. The capture/retention performance of the GPT at medium to high inlet flow rates is close to maximum efficiency (100%). With regard to the design appraisal of the GPT, a raised inlet offers a better capture/retention performance, particularly at lower flow rates. Further design appraisals of the GPT are recommended.
Resumo:
Gaining a competitive edge in the area of the engagement, success and retention of commencing students is a significant issue in higher education, made more so currently because of the considerable and increasing pressure on teaching and learning from the new standards framework and performance funding. This paper introduces the concept of maturity models (MMs) and their application to assessing the capability of higher education institutions (HEIs) to address student engagement, success and retention (SESR). A concise description of the features of maturity models is presented with reference to an SESR-MM currently being developed. The SESR-MM is proposed as a viable instrument for assisting HEIs in the management and improvement of their SESR activities.
Resumo:
Australian higher education institutions (HEIs) have entered a new phase of regulation and accreditation which includes performance-based funding relating to the participation and retention of students from social and cultural groups previously underrepresented in higher education. However, in addressing these priorities, it is critical that HEIs do not further disadvantage students from certain groups by identifying them for attention because of their social or cultural backgrounds, circumstances which are largely beyond the control of students. In response, many HEIs are focusing effort on university-wide approaches to enhancing the student experience because such approaches will enhance the engagement, success and retention of all students, and in doing so, particularly benefit those students who come from underrepresented groups. Measuring and benchmarking student experiences and engagement that arise from these efforts is well supported by extensive collections of student experience survey data. However no comparable instrument exists that measures the capability of institutions to influence and/or enhance student experiences where capability is an indication of how well an organisational process does what it is designed to do (Rosemann & de Bruin, 2005). We have proposed that the concept of a maturity model (Marshall, 2010; Paulk, 1999) may be useful as a way of assessing the capability of HEIs to provide and implement student engagement, success and retention activities and we are currently articulating a Student Engagement, Success and Retention Maturity Model (SESR-MM), (Clarke, Nelson & Stoodley, 2012; Nelson, Clarke & Stoodley, 2012). Our research aims to address the current gap by facilitating the development of an SESR-MM instrument that aims (i) to enable institutions to assess the capability of their current student engagement and retention programs and strategies to influence and respond to student experiences within the institution; and (ii) to provide institutions with the opportunity to understand various practices across the sector with a view to further improving programs and practices relevant to their context. Our research extends the generational approach which has been useful in considering the evolutionary nature of the first year experience (FYE) (Wilson, 2009). Three generations have been identified and explored: First generation approaches that focus on co-curricular strategies (e.g. orientation and peer programs); Second generation approaches that focus on curriculum (e.g. pedagogy, curriculum design, and learning and teaching practice); and third generation approaches—also referred to as transition pedagogy—that focus on the production of an institution-wide integrated holistic intentional blend of curricular and co-curricular activities (Kift, Nelson & Clarke, 2010). Our research also moves beyond assessments of students’ experiences to focus on assessing institutional processes and their capability to influence student engagement. In essence, we propose to develop and use the maturity model concept to produce an instrument that will indicate the capability of HEIs to manage and improve student engagement, success and retention programs and strategies. The issues explored in this workshop are (i) whether the maturity model concept can be usefully applied to provide a measure of institutional capability for SESR; (ii) whether the SESR-MM can be used to assess the maturity of a particular set of institutional practices; and (iii) whether a collective assessment of an institution’s SESR capabilities can provide an indication of the maturity of the institution’s SESR activities. The workshop will be approached in three stages. Firstly, participants will be introduced to the key characteristics of maturity models, followed by a discussion of the SESR-MM and the processes involved in its development. Secondly, participants will be provided with resources to facilitate the development of a maturity model and an assessment instrument for a range of institutional processes and related practices. In the final stage of the workshop, participants will “assess” the capability of these practices to provide a collective assessment of the maturity of these processes. References Australian Council for Educational Research. (n.d.). Australasian Survey of Student Engagement. Retrieved from http://www.acer.edu.au/research/ausse/background Clarke, J., Nelson, K., & Stoodley, I. (2012, July). The Maturity Model concept as framework for assessing the capability of higher education institutions to address student engagement, success and retention: New horizon or false dawn? A Nuts & Bolts presentation at the 15th International Conference on the First Year in Higher Education, “New Horizons,” Brisbane, Australia. Department of Education, Employment and Workplace Relations. (n.d.). The University Experience Survey. Advancing quality in higher education information sheet. Retrieved from http://www.deewr.gov.au/HigherEducation/Policy/Documents/University_Experience_Survey.pdf Kift, S., Nelson, K., & Clarke, J. (2010) Transition pedagogy - a third generation approach to FYE: A case study of policy and practice for the higher education sector. The International Journal of the First Year in Higher Education, 1(1), pp. 1-20. Marshall, S. (2010). A quality framework for continuous improvement of e-Learning: The e-Learning Maturity Model. Journal of Distance Education, 24(1), 143-166. Nelson, K., Clarke, J., & Stoodley, I. (2012). An exploration of the Maturity Model concept as a vehicle for higher education institutions to assess their capability to address student engagement. A work in progress. Submitted for publication. Paulk, M. (1999). Using the Software CMM with good judgment, ASQ Software Quality Professional, 1(3), 19-29. Wilson, K. (2009, June–July). The impact of institutional, programmatic and personal interventions on an effective and sustainable first-year student experience. Keynote address presented at the 12th Pacific Rim First Year in Higher Education Conference, “Preparing for Tomorrow Today: The First Year as Foundation,” Townsville, Australia. Retrieved from http://www.fyhe.com.au/past_papers/papers09/ppts/Keithia_Wilson_paper.pdf
Resumo:
The generational approach to conceptualising first year student learning behaviour has made a useful contribution to understanding student engagement. It has an explicit focus on student behaviour and we suggest that a capability maturity model interpretation may provide a complementary extension of that understanding as it builds on the generational approach by allowing an assessment of institutional capability to initiate, plan, manage, evaluate and review institutional student engagement practices. The development of a Student Engagement, Success and Retention Maturity Model (SESR-MM) is discussed along with its application in an Australian higher education institution. In this case study, the model identified first, second and third generation approaches and in addition achieved a ‘complementary extension’ of the generational approach, building on it by identifying additional practices not normally considered within the generational concept and indicating the capability of the institution to provide and implement the practices.
Resumo:
Layered LiNi1/3Co1/3Mn1/3O2, which is isostructural with LiCoO2, is considered as a potential cathode material for Li-ion batteries. Submicrometer sized porous particles are useful for high discharge rates. The present work involves a synthesis of submicrometer sized porous particles of LiNi1/3Co1/3Mn1/3O2 using a triblock copolymer as a soft template. The precursor obtained from the reaction is heated at different temperatures between 600 and 900 degrees C for 6 h to get the final product samples. The compound attains increased crystallinity with an increase in the temperature of preparation. However, there is a decrease in the surface area and also in the porosity of the sample. Nevertheless, the LiNi1/3Co1/3Mn1/3O2 sample prepared at 900 degrees C exhibits a high rate capability and stable capacity retention on cycling. The electrochemical performance of LiNi1/3Co1/3Mn1/3O2 prepared in the absence of the polymer template is inferior to that of the sample prepared in the presence of the polymer template. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3364944] All rights reserved.
Resumo:
Mesoporous intercalation compounds consisting of two differentdistributions of pores represent a potentially attractive material for high-rate cathodes. A mesoporous LiFePO4/C composite with two sizes of pores is prepared for the first time via a solution-based polymer templating technique. The precursor of the LiFePO4/C composite is heated at different temperatures in the range from 600 to 800 degrees C to study the effect of crystallinity, porosity, and morphology on the electrochemical performance. The composite is found to attain reduction in the surface area, carbon content, and porosity upon increasing temperature. Nonetheless, the composite prepared at 700 degrees C with pore-size distributions of around 4 and 50 nm exhibits a high rate capability and stable capacity retention upon cycling.
Resumo:
A novel ultra-lightweight three-dimensional (3-D) cathode system for lithium sulphur (Li-S) batteries has been synthesised by loading sulphur on to an interconnected 3-D network of few-layered graphene (FLG) via a sulphur solution infiltration method. A free-standing FLG monolithic network foam was formed as a negative of a Ni metallic foam template by CVD followed by etching away of Ni. The FLG foam offers excellent electrical conductivity, an appropriate hierarchical pore structure for containing the electro-active sulphur and facilitates rapid electron/ion transport. This cathode system does not require any additional binding agents, conductive additives or a separate metallic current collector thus decreasing the weight of the cathode by typically ∼20-30 wt%. A Li-S battery with the sulphur-FLG foam cathode shows good electrochemical stability and high rate discharge capacity retention for up to 400 discharge/charge cycles at a high current density of 3200 mA g(-1). Even after 400 cycles the capacity decay is only ∼0.064% per cycle relative to the early (e.g. the 5th cycle) discharge capacity, while yielding an average columbic efficiency of ∼96.2%. Our results indicate the potential suitability of graphene foam for efficient, ultra-light and high-performance batteries.
Resumo:
A novel approach is proposed for the simultaneous optimization of mobile phase pH and gradient steepness in RP-HPLC using artificial neural networks. By presetting the initial and final concentration of the organic solvent, a limited number of experiments with different gradient time and pH value of mobile phase are arranged in the two-dimensional space of mobile phase parameters. The retention behavior of each solute is modeled using an individual artificial neural network. An "early stopping" strategy is adopted to ensure the predicting capability of neural networks. The trained neural networks can be used to predict the retention time of solutes under arbitrary mobile phase conditions in the optimization region. Finally, the optimal separation conditions can be found according to a global resolution function. The effectiveness of this method is validated by optimization of separation conditions for amino acids derivatised by a new fluorescent reagent.