899 resultados para response surface methodology (RSM)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, the beauty leaf plant (Calophyllum Inophyllum) is being considered as a potential 2nd generation biodiesel source due to high seed oil content, high fruit production rate, simple cultivation and ability to grow in a wide range of climate conditions. However, however, due to the high free fatty acid (FFA) content in this oil, the potential of this biodiesel feedstock is still unrealized, and little research has been undertaken on it. In this study, transesterification of beauty leaf oil to produce biodiesel has been investigated. A two-step biodiesel conversion method consisting of acid catalysed pre-esterification and alkali catalysed transesterification has been utilized. The three main factors that drive the biodiesel (fatty acid methyl ester (FAME)) conversion from vegetable oil (triglycerides) were studied using response surface methodology (RSM) based on a Box-Behnken experimental design. The factors considered in this study were catalyst concentration, methanol to oil molar ratio and reaction temperature. Linear and full quadratic regression models were developed to predict FFA and FAME concentration and to optimize the reaction conditions. The significance of these factors and their interaction in both stages was determined using analysis of variance (ANOVA). The reaction conditions for the largest reduction in FFA concentration for acid catalysed pre-esterification was 30:1 methanol to oil molar ratio, 10% (w/w) sulfuric acid catalyst loading and 75 °C reaction temperature. In the alkali catalysed transesterification process 7.5:1 methanol to oil molar ratio, 1% (w/w) sodium methoxide catalyst loading and 55 °C reaction temperature were found to result in the highest FAME conversion. The good agreement between model outputs and experimental results demonstrated that this methodology may be useful for industrial process optimization for biodiesel production from beauty leaf oil and possibly other industrial processes as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the optimization and use of a Sequential Injection Analysis (SIA) procedure for ammonium determination in waters. Response Surface Methodology (RSM) was used as a tool for optimization of a procedure based on the modified Berthelot reaction. The SIA system was designed to (i) prepare the reaction media by injecting an air-segmented zone containing the reagents in a mixing chamber, (ii) to aspirate the mixture back to the holding coil after homogenization, (iii) drive it to a thermostated reaction coil, where the flow is stopped for a previously established time, and (iv) to pump the mixture toward the detector flow cell for the spectrophotometric measurements. Using a 100 mu mol L(-1) ammonium solution, the following factors were considered for optimization: reaction temperature (25 - 45 degrees C), reaction time (30 - 90 s), hypochlorite concentration (20 - 40 mmol L(-1)) nitroprusside concentration (10 - 40 mmol L(-1)) and salicylate concentration (0.1 - 0.3 mol L(-1)). The proposed system fed the statistical program with absorbance data for fast construction of response surface plots. After optimization of the method, figures of merit were evaluated, as well as the ammonium concentration in some water samples. No evidence of statistical difference was observed in the results obtained by the proposed method in comparison to those obtained by a reference method based on the phenol reaction. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the increasing emphasis on health and well-being, nutrition aspects need to be incorporated as a dimension of product development. Thus, the production of a high-fibre content snack food from a mixture of corn and flaxseed flours was optimized by response surface methodology. The independent variables considered in this study were: feed moisture, process temperature and flaxseed flour addition, as they were found to significantly impact the resultant product. These variables were studied according to a rotatable composite design matrix (-1.68, -1, 0, 1, 1.68). Response variable was the expansion ratio since it has been highly correlated with acceptability. The optimum corn-flaxseed snack obtained presented a sevenfold increase in dietary fibre, almost 100% increase in protein content compared to the pure corn snack, and yielded an acceptability score of 6.93. This acceptability score was similar to those observed for corn snack brands in the market, indicating the potential commercial use of this new product, which can help to increase the daily consumption of dietary fibre.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Response surface methodology (RSM), based on a 2(2) full factorial design, evaluated the moisture effects in recovering xylose by diethyloxalate (DEO) hydrolysis. Experiments were carried out in laboratory reactors (10 mL glass ampoules) containing corn stover (0.5 g) properly ground. The ampoules were kept at 160 degrees C for 90 min.(-) Both DEO concentration and corn stover moisture content were statistically significant at 99% confidence level. The maximum xylose recovery by the response surface methodology was achieved employing both DEO concentration and corn stover moisture at near their highest levels area. We amplified this area by using an overlay plot as a graphical optimization using a response of xylose recovery more than 80%. The mathematical statistical model was validated by testing a specific condition in the satisfied overlay plot area. Experimentally, a maximum xylose recovery (81.2%) was achieved by using initial corn stover moisture of 60% and a DEO concentration of 4% w/w. The mathematical statistical model showed that xylose recovery increases during DEO corn stover acid hydrolysis as the corn stover moisture level increases. This observation could be important during the harvesting of corn before it is fully dried in the field. The corn stover moisture was an important variable to improve xylose recovery by DEO acid hydrolysis. (c) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermoacoustic refrigerator (TAR) converts acoustic waves into heat without any moving parts. The study presented here aims to optimize the parameters like frequency, stack position, stack length, and plate spacing involving in designing TAR using the Response Surface Methodology (RSM). A mathematical model is developed using the RSM based on the results obtained from DeltaEC software. For desired temperature difference of 40 K, optimized parameters suggested by the RSM are the frequency 254 Hz, stack position 0.108 m, stack length 0.08 m, and plate spacing 0.0005 m. The experiments were conducted with optimized parameters and simulations were performed using the Design Environment for Low-amplitude ThermoAcoustic Energy Conversion (DeltaEC) which showed similar results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimization of photo-Fenton degradation of copper phthalocyanine blue was achieved by response surface methodology (RSM) constructed with the aid of a sequential injection analysis (SIA) system coupled to a homemade photo-reactor. Highest degradation percentage was obtained at the following conditions [H(2)O(2)]/[phthalocyanine] = 7, [H(2)O(2)]/[FeSO(4)] = 10, pH = 2.5, and stopped flow time in the photo reactor = 30 s. The SIA system was designed to prepare a monosegment containing the reagents and sample, to pump it toward the photo-reactor for the specified time and send the products to a flow-through spectrophotometer for monitoring the color reduction of the dye. Changes in parameters such as reagent molar ratios. residence time and pH were made by modifications in the software commanding the SI system, without the need for physical reconfiguration of reagents around the selection valve. The proposed procedure and system fed the statistical program with degradation data for fast construction of response surface plots. After optimization, 97% of the dye was degraded. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biotechnological conversion of biomass into fuels and chemicals requires hydrolysis of the polysaccharide fraction into monomeric sugars. Hydrolysis can be performed enzymatically and with dilute or concentrate mineral acids. The present study used dilute sulfuric acid as a catalyst for hydrolysis of Eucalyptus grandis residue. The purpose of this paper was to optimize the hydrolysis process in a 1.41 pilot-scale reactor and investigate the effects of the acid concentration, temperature and residue/acid solution ratio on the hemicellulose removal and consequently on the production of sugars (xylose, glucose and arabinose) as well as on the formation of by-products (furfural, 5-hydroxymethylfurfural and acetic acid). This study was based on a model composition corresponding to a 2 3 orthogonal factorial design and employed the response surface methodology (RSM) to optimize the hydrolysis conditions, aiming to attain maximum xylose extraction from hemicellulose of residue. The considered optimum conditions were: H2SO4 concentration of 0.65%, temperature of 157 degrees C and residue/acid solution ratio of 1/8.6 with a reaction time of 20 min. Under these conditions, 79.6% of the total xylose was removed and the hydrolysate contained 1.65 g/l glucose, 13.65 g/l xylose, 1.55 g/l arabinose, 3.10 g/l acetic acid, 1.23 g/l furfural and 0.20 g/l 5-hydroxymethylfurfural. (c) 2006 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A synbiotic yoghurt based on a combination of soymilk and yacon water extract (from yacon root tubers) was developed as a novel food product fermented with a probiotic culture of Enterococcus faecium CRL 183 and Lactobacillus helveticus ssp jugurti 4l6. Response surface methodology (RSM) was used to optimize the independent variables soymilk protein concentration and percentage of yacon extract in the formulation through a Central Composite Rotatable Design (CCRD), consisting of a 22 factorial design with two levels (-1, +1), two central points (0) and four axial points (± a, 0) (0, ± α). The responses were assessed by consumer acceptance tests. The optimization indicated that a formulation with a soymilk protein concentration of 1.74g/L and 25.86% of yacon extract gave the best average values, 5.91 for the taste and 6.00 for the overall impression responses. The formulation with 40% of yacon extract and the same concentration of soymilk protein achieved similar acceptance values: taste (5.94) and overall impression (5.87), however, with the extra yacon, it probably had a greater content of prebiotic fructooligosaccharides. Consequently, both formulations may give useful functional foods, with sensory properties comparable with those of soy yoghurt (control formulation). Copyright © 2010 by New Century Health Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The by-products generated from industrial filleting of tilapia surimi can be used for the manufacture of surimi. The surimi production uses large amounts of water, which generates a wastewater rich in organic compounds (lipids, soluble proteins and blood). Optimizing the number of washing cycles will contribute to a more sustainable production. A mathematical model of mechanically recovered tilapia meat (Oreochromis niloticus) for the processing of surimi (minced fish washing cycles and tapioca starch addition) based on two quality parameters (texture and moisture) was constructed by applying the response surface methodology (RSM). Each factor had an important effect on the moisture and texture of surimi. This study found that the optimal formulation for producing the best surimi using the by-products of tilapia filleting in manufacturing fish burger were the addition of 10% tapioca starch and three minced fish washing cycles. A microstructural evaluation supported the findings of the mathematical model. Practical Applications: The use of mechanically recovered fish meat (MRFM) for the production of surimi enables the utilization of the by-products of filleting fish. However, the inferior quality of the surimi produced from MRFM in relation to that produced with fillets necessitates the addition of starch; secondly, surimi production consumes a large volume of water. RSM provides a valuable means for optimizing the number of washing cycles and starch amounts utilized in fish burger production. Tapioca starch, widely produced in Brazil, has desirable characteristics (surface sheen, smooth texture, neutral taste and clarity in solution) for use in MRFM-produced surimi. © 2013 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the transesterification of jupati (Raphia taedigera Mart.) oil using ethanol and acid catalyst was examined. The production of biodiesel was performed using a central composite design (CCD). A range of values for catalyst concentration (1 to 4.21%), temperature (70-80 °C), and the molar ratio of alcohol to oil (6:1-13.83:1) were tested, and ester content, viscosity, and yield were the response variables. The synthesis process was optimised using response surface methodology (RSM), resulting in the following optimal conditions for the production of jupati ethyl esters: a catalyst concentration of 3.85% at 80 °C and an alcohol-to-oil molar ratio of 10:1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to apply response surface methodology to estimate the emulsifying capacity and stability of mixtures containing isolated and textured soybean proteins combined with pectin and to evaluate if the extrusion process affects these interfacial properties. A simplex-centroid design was applied to the model emulsifying activity index (EAI), average droplet size (D-[4.3]) and creaming inhibition (Cl%) of the mixtures. All models were significant and able to explain more than 86% of the variation. The high predictive capacity of the models was also confirmed. The mean values for EAI, D-[4.3] and Cl% observed in all assays were 0.173 +/- 0.015 mn, 19.2 +/- 1.0 mu m and 53.3 +/- 2.6%, respectively. No synergism was observed between the three compounds. This result can be attributed to the low soybean protein solubility at pH 6.2 (<35%). Pectin was the most important variable for improving all responses. The emulsifying capacity of the mixture increased 41% after extrusion. Our results showed that pectin could substitute or improve the emulsifying properties of the soybean proteins and that the extrusion brings additional advantage to interfacial properties of this combination. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermoacoustic engines are energy conversion devices that convert thermal energy from a high-temperature heat source into useful work in the form of acoustic power while diverting waste heat into a cold sink; it can be used as a drive for cryocoolers and refrigerators. Though the devices are simple to fabricate, it is very challenging to design an optimized thermoacoustic primemover with better performance. The study presented here aims to optimize the thermoacoustic primemover using response surface methodology. The influence of stack position and its length, resonator length, plate thickness, and plate spacing on pressure amplitude and frequency in a thermoacoustic primemover is investigated in this study. For the desired frequency of 207 Hz, the optimized value of the above parameters suggested by the response surface methodology has been conducted experimentally, and simulations are also performed using DeltaEC. The experimental and simulation results showed similar output performance.